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eometrical dependencies are being researched for 
analytical representation of the probability density 

function (pdf) for the travel time between a random, and 
a known or another random point in Tchebyshev’s  
metric. In the most popular case – a rectangular area of 
service – the pdf of this random variable depends  
directly on the position of the server. Two approaches 
have been introduced for the exact analytical calculation 
of the pdf: Ad-hoc approach – useful for a ‘manual’  
solving of a specific case; by superposition – an algo-
rithmic approach for the general case. The main concept 
of each approach is explained, and a short comparison is 
done to prove the faithfulness. 

 [Keywords: isochrones, pdf, random trip, travel time, Tcheby-
shev metrics] 

1 INTRODUCTION 

The automated storage and retrieval systems are 
commonly used world-wide. Usually they consist of racks 
served by cranes running through aisles between the 
racks. The cranes are capable of moving both vertically 
and horizontally simultaneously, thus their travel time is 
following the rules of the Tchebyshev’s metric, in which 
the travel time of the path between two points 1 and 2 (in 
2D area) is equal to the maximum of t|x1-x2| and t|y1-y2|. An-
other example of Tchebyshev’s metric is container storage 
and retrieval terminals, where the crane runs over a block 
of containers, and its wagon moves simultaneously. 

The first research on the travel times in this metric 
was done in the early 1970’s by Gudehus [Gud72], 
[Gud73]. However, in his survey from 2009 Roodbergen 
points out Hausman, Schwarz and Graves [Hsg76] as the 
first authors researching the travel time in 1976. The same 
authors extended their first simple travel time model, and 
suggest estimations for storage-retrieval systems with in-
terleaving [Ghs77]. Later the same model was considered 
by Bozer and White with relaxations of the assumptions 
[Boz84]. Travel time is estimated for rectangular racks, 
and the rack geometry is represented by a single variable 
(shape factor) instead of two (width and height). Bozer 
and White suggest a set of equations for travel time esti-
mation, based on the shape factor. 

As Roodbergen [Roo09] points out, other authors 
since then mainly continue the research of Hausman et al. 
(1976), Graves et al. (1977) and Bozer and White (1984) 
by studying different control policies, configurations of 
AS/RSs and/or operational characteristics. These works 
are used as a foundation for many scientific articles 
around the world – Russia (Smehov 1997 [Sme97]), 
South Korea (Park 1992 [Par92]), USA (Park 2002 
[Par02]) and others. 

All those materials examine different aspects of the 
problems in Tchebyshev’s metric, as for example single 
and double cycles, mean travel time and others. The arti-
cles explain dependencies of the main probability charac-
teristics, including the mean and variance. The probability 
density function for an I/O point located at the (lower-left 
hand) corner is known from [Boz84]. In the same paper 
the authors consider alternative configurations for the in-
put and output points: At the same end, but at different el-
evations; at opposite ends; or at the midpoint at the same 
end of the isle. 

2 MOTIVATION 

In general the server may start traveling from any lo-
cation, either known (as dwell point or last stor-
age/retrieval location) or unknown (future stor-
age/retrieval or random location). Such a trip may be 
followed by another one, thus forming a continuous trav-
eling from one location to another one. This is an ordinary 
person-on-board picking scenario, where the variable of 
interest is travel time between picking locations. Such a 
scenario matches the M|G|1 queuing model, where the re-
quests arrive exponentially in time, but are served on a 
general distribution. 

The mean and variance of the travel time for such 
picking trips are expressed for a dual command cycle in 
[Par91]. However, an exact examination of M|G|1 queues 
requires that the general distribution to be expressed in 
some manner. In the best case, the probability density 
function of the travel time will be defined. With pdf 
known, the mean, the variance and moments of higher or-
der could be calculated. 

A recent paper [Tod06] reexamines rectangular ser-
vice area with end-of-aisle picking, for an I/O point locat-
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ed at the lower-left hand corner. The article presents an 
alternate approach for calculation of the probability densi-
ty function of the travel time, and the results comply with 
those of [Boz84]. 

The calculation suggested by [Tod06] considers the 
area of isochrone lines as geometrical probability. The 
present article evolves this approach for expressing prob-
ability density function of travel time, if the I/O point is 
located at any position. 

3 RANDOM AND SEMI-RANDOM TRIP 

For clarity and accuracy, in the present paper the 
terms below are used exclusively: 

• Single trip is a travel from a start point to end 
point, through the shortest possible distance. 

• Random trip is a single trip from a random point 
to a random point. 

• Semi-random trip is a single trip which starts or 
ends with a random point, but the opposite side 
of the trip is a fixed point (yet arbitrary) which 
coordinates are known. 

Using these terms, the dual command cycle could be 
considered as a sequence of three single trips: semi-
random (starting from Input location), random, semi-
random (ending at Output location). 

4 I/O POINT LOCATED AT THE CORNER 

The problem of I/O point located at one of the cor-
ners of a rectangular service zone (hereinafter referred to 
as “corner case”) is examined in detail in [Tod06] for 
normalized time domain with limits 1 and shape factor b. 
As the suggested approach does not require normalization, 
the approach is presented below for non-normalized time 
domain. 

A rectangular area of service is given (fig.1) in non-
normalized time domain with size Tx and Ty. When the I/O 
point is located at the lower-left hand corner (position 0), 
the isochrones1 are either L-shaped or I-shaped thin sur-
faces, respectively in the intervals t<TMIN and 
TMIN<t<TMAX (where TMAX=max(Tx,Ty) and 
TMIN=min(Tx,Ty)). The area of an isochrone surface on dis-
tance t from the I/O point divided by the area of the whole 
service zone represents the probability that a single travel 
with duration between t and t+dt will occur, where dt is 
the width of the isochrone. 

                                                           

1 Isochrone - a line connecting places to which it takes the same 
time to travel. In the present paper all isochrones are calculated 
according to the I/O point. 

 

Figure 1. Service area in a non-normalized time domain 

Figure 2 shows the density of the time for a semi-
random travel from point 0 to a random point in the zone, 
which is the random variable2 t=max(τx,τy). The probabil-
ity density function3 fK(t) of this variable is initially shown 
in [Tod06] as the relation between the area ds(t) of an iso-
chrone and the service area S=Tx.Ty. Taking into account 
that fK(t)=dFK(t)/dt, this relation could be further simpli-
fied to a relation of the isochrones’ lengths to the service 
area (still in time domain). 

 

Figure 2. Pdf of the travel time for semi-random trip 

The transformation of equation (1) is done with the 
following observation: the surface ds(t) of each isochrone 
in Tchebyshev’s metric is equal to the product of the iso-
chrone’s length and its width (equal to the increase dt of 
the argument): ds(t)=l(t)dt. 

                                                           

2 The travel back from the same random point to point 0 is a 
semi-random travel with the same characteristics. Hence, the 
travel time for single-command cycle can be obtained by dou-
bling the random variable t. 

3 The letter K in fK(t) is used only to remind that the trip starts 
from (or ends to) a point with Known coordinates. 
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Figure 3. Isochrones with different shape 

 

Figure 4. Superposition of isochrones with same shape 
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5 I/O POINT AT ANY POSITION (SEMI-RANDOM TRIP) 

If the I/O point is located at an arbitrary position (x,y) 
as shown in Figure 3, the isochrones could have up to 4 
different shapes (□, ∏, L, or I-shape), for the different 
possible intervals of the distance t. In every interval the 
length l(t) of an isochrone can be expressed by t, Tx and 
Ty. Then from the dependency fK(t)=l(t)/S the probability 
density function of the travel time can be obtained, as it 
was done in equation (1) for an I/O point located at the 
corner. This approach is an exact application of the meth-
od described in [Tod06], as in this case the lengths of the 
isochrones are used, instead of their surfaces. 

This approach has the following disadvantage: The 
form of the isochrones in the different intervals depends 
on the position of the server, leading to a dependence of 
the expressions on logical decisions. However, there is an 
alternative approach. The I/O located anywhere can be 
considered as a superposition of four “corner cases”, as it 
is shown on Figure 4. 

Wherever it is located, the I/O point can be viewed as 
a common (border) point between four rectangular sub-
areas. For every sub-area the I/O point is always located at 
a corner. The length of the complete isochrone is consid-
ered as a sum of all its partial lengths (up to four) with 
each part residing in a different subarea. The same is valid 
for the surfaces of the isochrones - equation (2). 
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As in ordinary “corner case”, every part of an iso-
chrone can be either L- or I-shaped in a given subarea. 
Furthermore, equation (1) remains always valid, taking in-
to account the borders of the subarea. For the special case4 
shown on figure 4 the lengths of the isochrones are calcu-
lated in equation (3) and the pdf f(t) of the travel time is 
shown in equation (4.1). What remains to be calculated is 
the sum for all intervals with equation (4.2): 

∑
=

=
4

1

)()(
i

i tftf  (4.2) 

The superposition of different sub-areas allows fur-
ther simplifying of the calculation, as follows: 

Equation (1) gives the dependency of the pdf (or the 
isochrone lengths/surfaces) on the limits of the argument 
t, and on the size of the service area. For the ordinary cor-
ner case the values TMIN and TMAX match the size of the ar-
ea. These values can also be assumed to be points of 
change of the isochrones’ shape. With such assumptions 
equation (1) describes each of the four subareas, and the 
equation can be parameterized as fi(t)= fi(t,TMIN,TMAX). 

Then the probability density function of the travel 
time from an I/O located at point K with known coordi-
nates (x,y) is calculated in the general case5 as in equation 
(5): 
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6 GRAPHICAL REPRESENTATION OF THE PDF 

The graphic of the probability density function of the 
time for a single travel from an I/O located in the corner is 
known since the seventies. However, until now what the 
pdf looks like when an I/O point is located at an arbitrary 
(known) point K has not been published. The graphical 
representation of this function is shown in figure 5 and 
figure 6, together with the graphic’s behavior in the dif-
ferent subareas. The fK(t) has been calculated for a rectan-
gular service area with size Tx=100, Ty=60; and an I/O 
point located at coordinates x=25, y=15. Tchebyshev’s 
metric is considered. 

The result function fK(t) in figure 5 is calculated ac-
cording to the division shown in figure 3, for which every 
isochrone resides completely in the same sub-area. The 

                                                           

4 Equations (3) and (4.1) are valid when the values of x, y, Tx-x 
and Ty-y relate to each other as shown on figure 4 (y<x etc.) 

5 Not restricted to the special case on figure 4 

result graphic is a piece-wise function, composed by 4 dif-
ferent functions, each of which represents the l(t)/S rela-
tion of the corresponding subinterval of the varying of t. 
These intervals are: (0,15]; (15;25]; (25, 60-15] and (60-
15, 100-25]. 

 

Figure 5. Pdf calculated as piecewise function through iso-
chrones with different shapes 

In contrast, the graphic fK(t) in figure 6 is composed 
as a superposition of fi(t) functions defined for the four 
subareas as shown in figure 4. In every sub-area t varies 
from 0 to TMAX the rule of equation (1). 

 

Figure 6. Pdf calculated as superposition of isochrones with 
same shape 

The graphic fK(t) is the same in both figures – a three-
peak left part, plus an uniform right part. From figure 6 it 
is clear why the shape looks like that. It is because in the 
four sub-areas, the pdf has the same appearance (as in fig-
ure 2). The peaks of the two subareas always coincide, as 
the shortest distance TMIN between the I/O location and 
the area borders is always common for two subareas (in 
the given example – these are subareas III and IV). 
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7 COMPARISON WITH EXISTING METHODS (RANDOM 
TRIP) 

The density function defined with equation (5) repre-
sents the travel time of a semi-random trip in the service 
area. In order to evaluate the correctness of the equation, 
the mean of a random travel will be calculated and com-
pared with the result derived through an existing method. 
Based on this pdf, one can write integrals (6.1) and (6.2). 

∫=
MAXT

SRT dtyxttfyxE
0

),,(),(  (6.1) 

∫=
MAXT

SRT dtyxtftyxE
0

2
2 ),,(),(  (6.2) 

Expressions (6.1) and (6.2) give the mean of travel 
time and square travel time for a semi-random trip from 
(x,y) to a random location. As (x,y) is an arbitrary location 
within the service area, these expressions define all semi-
random trips for this area. 

∫∫=
YXTT

SRT
YX

RT dxdyyxE
TT

E ),(1
 (6.3) 

∫∫=
YXTT
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YX
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E ),(1
22  (6.4) 

( )22 RTRTRT EEVar −=  (6.5) 

Expressions (6.3) and (6.4) apply the semi-random 
calculations by placing the I/O point at every possible lo-
cation within the service area, then averaging the integral 
sum. As a result the means of travel time and square travel 
time for a random trip (from random to random location) 
within the area are obtained. Finally, equation (6.5) gives 
the variance of the travel time for a random trip by using 
(6.3) and (6.4). 

These values can be compared to already known re-
sults published in [Par91] as shown in Table 1. 

The above mentioned comparison is presented6 in 
Table 2. Every third row of the table presents the absolute 
values of the calculated percentage deviations of the cor-
responding values. One can see that the maximal devia-
tion between the results of Park and Todorov is less than 

                                                           

6 The shape factor b for ET is calculated as b=TMIN/TMAX, with 
TMAX=10 and TMIN varying from 1 to 10. The calculation is 
done by Maple, and the precision is limited to 4 decimal digits 
because of the high-computing demand of the triple integral. 

0.03%. Such deviation can be attributed to the computing 
error accumulated during the triple numeric integration of 
f(t,x,y). Taking this into account, the results match. 

From the coincidence of the results it can be conclud-
ed that the aforementioned equations are correct. Espe-
cially interesting is equation (5) which allows the proba-
bility density function of the travel time to be calculated 
in a non-normalized time domain. The sample graphic 
shown on Figure 5 and Figure 6 has not been published 
until now. All subsequent equations are also defined in a 
non-normalized time domain. They do not depend on the 
shape factor b suggested by [Boz84], and the results ob-
tained (e.g. by (6.1)) will be in the exact time units. 

8 CONCLUSION 

The present research contributes in the following: It 
improves the method presented in [Tod06] by defining the 
probability density function of travel time without normal-
ization. The research also introduces two approaches for 
the exact analytical calculation of the probability density 
function with I/O points located at any position. The com-
parison made between these approaches suggests that the 
ad-hoc approach is useful for a ‘manual’ solving, but the 
superposition approach is applicable for an automated 
solving of the general case. Further comparison is carried 
out between the results obtained by the method suggested 
by Todorov and those obtained by Park. According to the 
comparison the methods are equivalent, which proves the 
faithfulness of the suggested approach. 
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Table 2. Comparison of the results 
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Meaning of the value Notation Equation Notation in [Par91] Equation 
in [Par91] 

Mean of travel time for a random trip ERT (6.3) E[D] (2.20) 

Mean of square travel time for a random trip ERT2 (6.4) E[D2] (2.23) 

Variance of travel time for a random trip VarRT (6.5) E[D2]-E[D]2 n/a 

 

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

E[D] 0.3349 0.3397 0.3474 0.3578 0.3708 0.3861 0.4035 0.4229 0.4440 0.4667 

ERT 0.3350 0.3398 0.3473 0.3578 0.3708 0.3862 0.4036 0.4229 0.4440 0.4667 

|Δ%| 0.0299 0.0294 0.0288 0 0 0.0259 0.0248 0 0 0.0294 

E[D2] 0.1668 0.1677 0.1700 0.1744 0.1813 0.1912 0.2044 0.2213 0.2420 0.2667 

ERT2 0.1668 0.1677 0.1700 0.1744 0.1812 0.1912 0.2044 0.2212 0.2420 0.2667 

|Δ%| 0 0 0 0 0.0552 0 0 0.0452 0 0 

E[D2]-E[D]2 0.0546 0.0523 0.0493 0.0464 0.0438 0.0421 0.0416 0.0425 0.0449 0.0489 

VarRT 0.0546 0.0522 0.0494 0.0464 0.0437 0.0420 0.0415 0.0424 0.0449 0.0489 

|Δ%| 0.1226 0.1299 0.1409 0 0.2282 0.1833 0.1941 0.2355 0 0 
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