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ideflexing plastic chains are used increasingly in ma-
terial handling due to their highly flexible conveying 

design and layout options. These systems are often 
equipped with so called modular belts. Due to their spe-
cific force transmission, detailed calculation methods are 
not yet available. In the following, a generally valid cal-
culation approach is derived and its difference to exist-
ing solutions shown by examples. 

[Material handling, chain conveyor system, modular belt, con-
veyor chain, chain tension force, dimensioning] 

1 INTRODUCTION 

Suspension chain conveyors are a type of unit load 
conveyors based on an infinite, revolving chain. The chain 
serves as both, the load carrier and the traction element. 
Due to versatile adaptability and layout options, many dif-
ferent types of goods can be conveyed. Depending on the 
design, either horizontal or vertical transport can be real-
ized. The chain with its function as a traction and convey-
ing element runs preferably in a specially designed rail 
made of steel or plastic and is driven by form-fitted chain 
sprockets.  

During the last years, thermoplastic chains are used 
increasingly in material handling due to the following 
main advantages: lubrication-free and maintenance-free 
operation, low weight and high noise attenuation as well 
as efficient fabrication of chain links with complex de-
sign.  

This report sets its focus particularly on three differ-
ent chain types which are mainly manufactured as plastic 
chains: slat top chains, multiflex chains, as well as modu-
lar belts (Figure 1).  

Slat top chains usually consist of single-piece chain 
links flexibly connected by a steel bolt. The standard de-
sign of these chains only allows for straight running oper-
ation. By increasing the hinge joint, a design with a lim-
ited sideflexing-ability can be realized. Both types are 

offered either as plastic or steel chains and are commonly 
used in the beverage industry, e.g. for conveying bottles. 

Multiflex chains are characterized by a gimbal, which 
enables outstanding spatial mobility while possessing high 
mechanical strength simultaneously. Apart from the con-
nection bolts, these chains consist entirely of plastic. 
Compared to slat top chains, much smaller turning radii 
and thus extremely flexible conveyor designs can be real-
ized. Application areas are mainly the transport of small 
and medium heavy goods in clean environments (e.g. 
food, sanitary and pharmaceutical products, and packag-
ing) but also in linking devices of processing machines 
and machine tools. 

 
Figure 1: Slat top chain (left), multiflex chain (center)  

and modular belt (right) 

Modular belts are conveying chains with a flat, planar 
geometry. They consist of individual, flexibly designed 
plastic modules, arranged side by side and flexibly con-
nected in the direction of transport using plastic or steel 
rods. Such a construction allows realizing very wide con-
veyor belts. They have an accordingly broad range of ap-
plication possibilities, starting with the food industry up to 
heavy goods transportation in the automotive sector. This 
type of chain can also be realized as either a straight run-
ning or a sideflexing type. The curve flexibility becomes 
possible by the use of a slotted hole, which enables the 
chain to be pushed together within the plane on the inside 
of the curve. 

2 KNOWN CALCULATION METHODS AND 
CHALLENGES WITH MODULAR BELTS 

When dimensioning conveyor systems, the calcula-
tion of the chain tension forces occurring within the sys-
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tem is of great importance. The following simplified pic-
ture should aid a general understanding for the problem: 
In contrast to some other types of transmission systems 
such as flat belt or toothed belt systems, any pre-
tensioning of the chain is usually not required. Therefore 
chain slack occurs at the lower part of the chain sprocket, 
where the chain tension vanishes. The force builds up 
slowly during the reverse movement of the chain due to 
its mass and the friction between the chain and the guide 
rail. After the reversal point has been passed, the convey-
ing track starts. Here, the tension increases significantly 
due to the additional weight of the good and reaches its 
highest value directly before entering back into the chain 
sprocket. 

 
Figure 2: Simple tension force model of a chain conveyor 

Calculating real conveyor systems requires at first the 
so called circumferential force 𝐹𝑈, which is the force nec-
essary to make the chain moving. It is primarily calculated 
from the frictional losses at different sections of the sys-
tem as well as the force to overcome slopes along the line. 
The circumferential force is mainly used for calculating 
the required driving power. Without a pre-tension force, 
the circumferential force, apart from some special cases, 
will be equal to the maximum chain tension force required 
for the dimensioning of the chain size or the permissible 
load. Often additional factors such as the startup accelera-
tion rate have to be accounted for within the calculation. 

 
Figure 3: Schematic construction of a modular belt conveyor 

[Ra12], [SCH08] 

The calculation of chain conveyor systems is basical-
ly identical for most cases. Starting from the chain’s exit 
point at the drive gear, any friction and resistance forces 
during one revolution of the chain are summed up. Since 
the layout of a conveyor systems is often quite complex 
including flat sections, curves, slopes, buffers, etc., and 
having different loading conditions, the chain tension in-
creases at a different rate within each section. Therefore 
the entire conveyor has to be separated into individual 
sections, for which distinct loading cases and calculation 

formulas are valid. Tracing the course of the conveyor, the 
exhibited chain tension force 𝐹n at the end of a section is 
then the sum of the tension of the previous section 𝐹n−1 
and the losses 𝐹R of the present section due to the friction-
al resistance. The basic formula for calculating chain ten-
sion can thus be written as 

𝐹n = 𝐹R + 𝐹n−1. (1) 

Most suppliers offer calculation formulas to their cus-
tomers as part of their catalogues (e.g. [Int13], [Hab13], 
[BR12]) or in the form of a calculation program. They are 
usually simple and clearly structured and therefore 
straightforward to use.  

However, the simple structure tends to be highly er-
ror-prone particularly for cases with a complex conveyor 
layout. On the one hand, some suppliers of conveyor sys-
tems having lower chain runs allow neglecting those re-
spective sections in order to minimize the computational 
effort. On the other hand, the calculation of curved sec-
tions is often simplified in such a way that a so called 
curve factor is used. However, this approximation can on-
ly be shown to be valid under certain conditions [Aue06].  

A first step towards a generic calculation approach 
has been reported by AUERBACH [Aue06]. The validity of 
the formulas for straight section could be confirmed and 
may be used generally for any conveyer system operating 
with traction elements such as chains, belts, etc. However, 
the situation is different for horizontal curves. Instead of 
the curve factor, the equations developed in [Aue06] are 
directly fed with the wrap angle as well as the friction co-
efficient, separated into the vertical direction (chain and 
good weight) and radial direction of force (curve support). 
This leads to significantly higher accuracy and better flex-
ibility. 

 
Figure 4: Transmission of chain tension and radial support for 

modular belts in horizontal curves 

However, the validity of the equations of AUERBACH 
for calculating modular belts is limited by the use of an 
EULER-EYTELWEIN approach valid for rope wrapping. 
Figure 4 clearly shows an asymmetric loading of this type 
of chain within horizontal curves. This leads to a large 
distance between the point where the tension force is ex-
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erted (at the outside) and the support for the radial force 
(at the inside). For multiflex and slat top chains, this spa-
tial distance is much smaller and much less important, 
such that omitting it in the calculation of horizontal curve 
section in [Aue06] yields correct results. Although this 
approach also shows acceptable results in the case of 
curved modular belts, significant deviations occur for very 
broad chains with a large arc of contact. 

In order to correctly calculate broad conveyer sys-
tems, a novel approach is required which explicitly takes 
into account the extent of the traction element. 

3 LOAD MODEL AND DIMENSIONING 

3.1 STRAIGHT SECTION 

3.1.1 LOADING CASES 

The straight section is the most fundamental element 
of a conveyor system. Its calculation is mostly identical 
for similarly designed conveyor system based on traction 
elements, such as chain, belt, or toothed belt conveyors. 
Additionally, the equations presented in the following are 
mostly consistent with the calculation instructions provid-
ed by the supplier. 

Simple straight section 

The simplest loading case is a straight, planar section 
as shown in Figure 5. The load is exerted solely by the 
normal force 𝐹N, which results from the good weight and 
the dead load of the chain. Due to the friction between 
chain and slide rail, this leads to the frictional force 𝐹RS.  

 
Figure 5: Simple straight section 

In order to calculate the chain tension Fn at the end of 
the respective section according to Equation (1) (with 
𝐹R = 𝐹RS), the tension force of the previous section Fn−1 
is used as a basis. The formula for the frictional loss 𝐹RS 
reads as 

𝐹RS = 𝜇s ∙ 𝑔 ∙ 𝐿 ∙ (𝑞K + 𝑞G). (2) 

Here, 𝜇S is the friction coefficient between chain and rail 
𝑔 is the gravitational acceleration, 𝑞G and 𝑞K are the spe-
cific weight of the good and the chain, respectively, and 
𝐿 is the length of the section considered. 

The specific weights of the good 𝑞G can be found 
from the length of the good 𝑙G and the distance between 
them 𝑙D,  

𝑞G  =
𝑚G

(𝑙G + 𝑙D). (3) 

The specific weight of the chain per one meter of its 
length 𝑞K can be found directly in the supplier catalog for 
multiflex and slat top chains. For modular belts, the sup-
plier value 𝑚K

∗  usually refers to a weight per square meter, 
such that it requires a multiplication by the chain width 
𝑏K: 

𝑞K = 𝑚K
∗ ∙ 𝑏K. (4) 

 

Straight section with slope 

If the conveying section is to overcome a height dif-
ference as shown in Figure 6, the equation has to be ex-
tended by some component accounting for the slope an-
gle.  

 
Figure 6: Straight section with slope 

Therefore the chain tension force 𝐹n will contain a 
component for the downhill force and can be calculated as 

𝐹n = 𝐹RS + 𝐹G ∙ sin𝛼 + 𝐹n−1. (5) 

Here the force due to gravity 𝐹G of the section can be cal-
culated as  

𝐹G = 𝑔 ∙ 𝐿 ∙ (𝑞K + 𝑞G) (6) 

and the friction force 𝐹RS needs to be extended beyond 
the planar transport case (Equation (2)) by a slope factor 
cos𝛼: 

𝐹RS = 𝜇S ∙ 𝑔 ∙ 𝐿 ∙ (𝑞K + 𝑞G) ∙ cos𝛼. (7) 

Care has to be taken regarding the sign of the slope 
angle 𝛼. Whereas 𝛼 > 0 refers to ascending sections, a 
value of 𝛼 < 0 is used for descending conveying sections. 
By definition, the sign of 𝛼 can also be found from the 
vertical component of the velocity vector as shown in 
Figure 7. 
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Figure 7: Determining the slope angle for ascending (left) and 

descending conveying sections (right) 

It should be noted that Equation (5) becomes invalid 
if the good starts slipping on the chain if the friction coef-
ficient is too low. 

Straight section with accumulation 

 
Figure 8: Straight section with accumulation 

In some application cases, the conveyed good will be 
accumulated on the chain according to Figure 8, such that 
an additional friction component 𝐹RG needs to be taken in-
to account. The chain tension force 𝐹n therefore reads as  

𝐹n = 𝐹RS + 𝐹RG + 𝐹n−1 (8) 

where the friction force 𝐹RS is found from Equation 2 and 
the friction force 𝐹RG between chain and good reads as 

𝐹RG = 𝜇G ∙ 𝑔 ∙ 𝐿 ∙ 𝑞G. (9) 

The friction coefficient between chain and good is de-
scribed by 𝜇G. It should be noted that the specific good 
weight 𝑞G according to Equation 3 needs to be adjusted 
to sections with accumulation. In such cases the distance 
between the pieces of goods reduces to 𝑙D = 0. 

Straight section with slope and accumulation 

Besides the loading cases discussed before, there are 
situations where conveying sections may feature slope 
and accumulation simultaneously, as shown in Figure 9. 
In contrast to accumulation-free conveyance, the downhill 
force due to gravity is solely due to chain weight but not 
due to the good itself. 

  
Figure 9: Straight section with slope and accumulation 

The chain tension force 𝐹n can then be calculated as  

𝐹n = 𝐹RS + 𝑔 ∙ 𝐿 ∙ 𝑞K ∙ sin𝛼 + 𝐹RG + 𝐹n−1 (10) 

and represents a mixture of the two previous loading cas-
es. The friction force 𝐹RS is found from Equation 7. 
However, for the calculation of the accumulation force 
𝐹RG, the good weight has to be taken into account. The 
equation reads as  

𝐹RG = 𝜇G ∙ 𝑔 ∙ 𝐿 ∙ 𝑞G ∙ |cos𝛼|. (11) 

 

3.1.2 GENERAL EQUATIONS FOR STRAIGHT SECTIONS 

From the loading case reviewed before, a general 
equation for the chain tension force of straight sections 
can be deduced: 

𝐹n = 𝐹RS + 𝐹G ∙ sin𝛼 + 𝐹RG ∙ 𝜉𝑆 + 𝐹n−1. (12) 

In order to distinguish between the cases where good 
is accumulated and where it is not, an accumulation pa-
rameter 𝜉𝑆 will be introduced, defined as: 

Accumulation: 𝜉𝑆 = 1; no accumulation: 𝜉𝑆 = 0. (13) 

The accumulation parameter is also required for the 
modification of Equation (6) as follows: 

𝐹G = 𝑔 ∙ 𝐿 ∙ (𝑞K + 𝑞G ∙ (1 − 𝜉𝑆)). (14) 

By virtue of Equation (7) and (11) to (14), the chain 
tension 𝐹n present at the end of a straight section may now 
be generalized to finally read as follows: 

𝐹n = 𝑔 ∙ 𝐿 ∙ �𝜇S ∙ (𝑞K + 𝑞G) ∙ cos𝛼 + �𝑞K + 𝑞G ∙
(1 − 𝜉𝑆)� ∙ sin𝛼 + 𝜇G ∙ 𝑞G ∙ |cos𝛼| ∙ 𝜉𝑆� + 𝐹n−1.  

(15) 

 

3.2 HORIZONTALLY CURVED SECTION 

3.2.1 DETERMINING THE RADIAL FORCE FOR 
HORIZONTAL CURVES 

If the direction of motion is changed, the chain will 
also be supported at the inner part of the curve with the 
arc length 𝑝 as shown in Figure 4. When going through 
the curve, friction losses occur due to the weight of the 
good and the weight of the chain, as discussed in the pre-
vious sections. However, additionally there are losses due 
to the curve friction which can be calculated from the ra-
dial support force of the chain and the friction coefficient.  
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Figure 10: Arc segment 

The radial force on a single chain link during a hori-
zontal curve can be approximately calculated from the 
equilibrium of forces within in small arc segment (Figure 
10). It follows from the equilibrium of forces in the verti-
cal direction and some subsequent simplifications that the 
radial force on a chain link can be written as 

𝐹Rad = 𝐹n 
𝑅
∙ 𝑝. (16) 

 

3.2.2 DERIVATION OF THE BASIC EQUATIONS FOR 
THE CHAIN TENSION FORCE 

It has been demonstrated before, that modular chains 
are loaded inhomogeneously in the transverse direction 
within horizontally curved sections. Therefore the line 
loads 𝑓Ra und 𝑓Ri are introduced to aid the derivation of 
the equations for calculating the chain tension force. They 
act into the direction of chain tension and depend on the 
actual loading condition. By using the individual line 
loads, a basic equation for the calculation of the chain ten-
sion force in horizontal curves, valid for any loading case, 
can be derived as follows. 

 
Figure 11: Differential representation of the forces within a  

horizontal curve 

Figure 11 shows the forces of a horizontally curved 
section in a differential representation. The effective 
lengths of the line loads thereby follow from a multiplica-
tion with the angle segment under investigation and the 
respective radius. From the equilibrium of forces in radial 
direction and after some simplification one finds  

d𝐹Rad − 𝐹 ∙ d𝜑 − d𝐹Q = 0 (17) 

as well as from the force equilibrium in tangential direc-
tion  

𝑑𝐹 − 𝐹Q ∙ d𝜑 − d𝐹RK − 𝑓Ra ∙ 𝑅a ∙ d𝜑 − 𝑓Ri ∙ 𝑅𝑖 ∙ d𝜑
= 0. (18) 

From the equilibrium of momentum around the cen-
ter of the curve and subsequent simplification it follows: 

𝑓Ra ∙ 𝑅a2 ∙ d𝜑 − d𝐹 ∙ 𝑅a + 𝜇K ∙ d𝐹Rad ∙ 𝑅i 
+𝑓Ri ∙ 𝑅i2 ∙ d𝜑 + 𝐹Q ∙ d𝜑 ∙ 𝑅a = 0. (19) 

After solving the system of equations (Equations 17 
through 19), subsequently solving the resulting system of 
differential equations of 1st order for the chain tension 
force and some final simplifications, one finds: 

𝐹n(𝜑) = (𝐶0 + 𝐹n−1) ∙ 𝑒𝐶1∙𝜑 − 𝐶0, (20) 

where the parameters 𝐶0 and 𝐶1are defined as follows: 

𝐶0 =
𝑓Ri ∙ 𝑅i2 + 𝑓Ri ∙ 𝑅a ∙ 𝑅i + 2 ∙ 𝑓Ra ∙ 𝑅a2

𝜇K ∙ (𝑅i + 𝑅a)
 (21) 

𝐶1 =
𝑅a − �𝑅a2 + 𝜇K2 ∙ 𝑅a2 − 𝜇K2 ∙ 𝑅i2

𝜇K ∙ (𝑅i − 𝑅a)
. (22) 

As a boundary condition, homogeneously distributed 
line loads 𝑓Ra und 𝑓Ri with 

𝑓Ri = 𝑓Ra ∙
𝑅a
𝑅i

. (23) 

is assumed, such that Equation (21) simplifies to 

𝐶0 =
𝑓Ra ∙ 𝑅a ∙ (𝑅i + 3 ∙ 𝑅a)

𝜇K ∙ (𝑅i + 𝑅a)
. (24) 

As described above, the basic Equation (20) is valid 
for all horizontal curve sections. In order to investigate 
individual loading cases, the line load 𝑓Ra has to be de-
termined as described in Section 0 and inserted into this 
equation. 
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3.2.3 LOADING CASES FOR CALCULATING THE 
OUTER LINE LOAD IN HORIZONTAL CURVES 

Simple horizontal curve 

 
Figure 12: Schematic sketch of a horizontal curve with line 

load 

For simple horizontal curves as shown in Figure 12, 
the line load 𝑓Ra is determined only by the frictional force 
between chain and slide rail due to the specific weights of 
the good 𝑞G and the chain 𝑞K according to the relation 

𝑓Ra = 1
2 ∙ (𝑞K + 𝑞G) ∙ 𝜇S ∙ 𝑔. (25) 

Horizontal curve with accumulation 

For curves subject to an additional accumulation 
load, the weight components known from Equation 25 
have to be extended by an additional accumulation com-
ponent due to the friction between chain and good with 
friction coefficient 𝜇G, such that the line load is calculated 
as  

𝑓Ra = 1
2
∙ 𝑔 ∙ (𝜇S ∙ 𝑞G + 𝜇S ∙ 𝑞K + 𝜇G ∙ 𝑞G) (26) 

Horizontal curve with slope 

Such a loading condition can be found in conveyor 
systems with a so called spiral or helical shape. They are 
used for instance for bridging height differences in the 
conveying process as well as for buffering or dry-
ing/cooling of products. Due to the slope angle 𝛼, the line 
load 𝑓Ra is then found from an appropriately adjusted fric-
tional force based on the friction coefficient 𝜇S from the 
contact of chain and slide rail with  the weight compo-
nents of good and chain. In addition, a downhill force is 
created by the slope, which acts on both, the good and the 
chain. With those components, the equation reads as 

𝑓Ra = 1
2
∙ 𝑔 ∙ �(𝜇S ∙ cos𝛼 + sin𝛼) ∙ 𝑞G

+ (𝜇S ∙ cos𝛼 + sin𝛼) ∙ 𝑞K�. 
(27) 

Horizontal curve with slope and accumulation 

If a spiral conveyor is operated in accumulation 
mode, the adjusted components described before (fric-
tional contact of good and chain as well as downhill force 
of the chain due to the slope angle 𝛼 have to be extended 
by an accumulation force component due to the friction 
between chain and good with the friction coefficient 𝜇G. 
Thus the equation reads as 

𝑓Ra = 1
2
∙ 𝑔 ∙ �(𝜇S ∙ cos𝛼 + 𝜇G ∙ |cos𝛼|) ∙ 𝑞G

+ (𝜇S ∙ cos𝛼 + sin𝛼) ∙ 𝑞K�.  
(28) 

 

3.2.4 GENERAL FORMULATION OF HORIZONTALLY 
CURVED SECTIONS 

From the four loading cases, a general formulation of 
the line load 𝑓Ra can be found and reads as: 

𝑓Ra = 1
2
∙ 𝑔 ∙ ��𝜇S ∙ cos𝛼 + 𝜇G ∙ |cos𝛼| ∙ 𝜉𝑆 + sin𝛼 ∙

(1 − 𝜉𝑆)� ∙ 𝑞G + (𝜇S ∙ cos𝛼 + sin𝛼) ∙ 𝑞K�.  
(29) 

This general formulation requires the accumulation 
parameter 𝜉𝑆 as introduced in Equation (13). 

 

3.3 VERTICALLY CURVED SECTIONS 

3.3.1 BASIC EQUATION WITHOUT ACCUMULATION 

A vertical curve can be found in those conveyor sys-
tems before and after any slope section. Such sliding 
curves have a similar loading as modular chains and have 
been already described in detail [Au06] for multiflex 
chains (Figure 13). 

         
Figure 13: Schematic diagram of forces at the vertically curved 

section, analogous to [Aue06, S.96] 

Forces exerted in vertical curves are very similar to 
those in horizontal curves. When analyzing a small chain 
section, it is obvious that the load components of radial 
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force and weight are divided in different angle-dependent 
components at each point of the curve. By multiplication 
of the weight with the cosine or the sine of the angle, both 
components can be found analogous to the decomposition 
of forces at an inclined plane. 

The general case of loading of a vertical curve with-
out accumulation can be derived using Figure 13 as fol-
lows. From the equilibrium of forces in the tangential di-
rection follows the equation in simplified form 

d𝐹 = d𝐹RK + d𝐹G ∙ sin𝛼 (30) 

with the differential changes of the force d𝐹, the friction 
force d𝐹RK between chain and slide rail in the curve, the 
axial component of the force due to gravity d𝐹G and the 
slope angle 𝛼. From the equilibrium of forces in the radial 
direction after a simplification it follows that  

𝐹 ∙ d𝛾 = d𝐹Rad ∙ ζ + d𝐹G ∙ cos𝛼 (31) 

with the differential angle-dependent force 𝐹, the differ-
ential change of the radial force d𝐹Rad and the axial com-
ponent of the force due to gravity d𝐹G. The force due to 
gravity of the chain section under investigation consists of 
the sum of specific weights of the good 𝑞G and the chain 
𝑞K. They are multiplied by the radius of the vertical curve 
𝑅, the acceleration due to gravity 𝑔, and the differential 
change of angle d𝛾, which yields the equation 

d𝐹G = 𝑅 ∙ 𝑔 ∙ (𝑞G + 𝑞K) ∙  d𝛾 (32) 

The frictional force d𝐹RK is defined as the product of the 
friction coefficient 𝜇S (between chain and slide rail) and 
the differential radial force d𝐹Rad reading as 

d𝐹RK = 𝜇s  ∙ d𝐹Rad ∙ ζ. (33) 

The parameter ζ describes whether the radial force of 
the chain points towards the center of the curve (ζ = 1) or 
in the opposite direction (ζ = −1). This distinction is re-
quired because in ascending curves the chain in certain 
circumstances (for example at very high goods weights) is 
pressed against the sliding guide at the outer radius of 
curvature and not against the inner curve support (see 
Figure 13, Figure 14 and Figure 16). 

The initial value of ζ is unknown and might possibly 
change during the passage of ascending curves. In this 
case, despite a constant chain movement the direction of 
the frictional force would reverse suddenly. To avoid this, 
the product of d𝐹Rad ∙ ζ must always be greater than or 
equal to zero. That means the inequality resulting from 
Equation (30) 

0 ≤ 𝐹(𝜁) −
d𝐹G
d𝛾

∙ cos𝛼;    𝜁 = �−1
1  (34) 

has to be satisfied at all times. The solution of the inequal-
ity (34) has to be performed numerically. 

By inserting Equation (32) as well as (33) into Equa-
tion (30) and solving for d𝐹Rad one finds 

d𝐹Rad =
−(𝑞G + 𝑞K) ∙ d𝛾 ∙ sin𝛼 ∙ 𝑅 ∙ 𝑔 + d𝐹

ζ ∙ 𝜇S
. (35) 

After inserting the resulting Equation (35) into (31) 
and solving for the force 𝐹 it follows that 

d𝐹
d𝛾

− ζ ∙ 𝜇s ∙ 𝐹 = 𝑅 ∙ 𝑔 ∙ (sin𝛼 − 𝜇s ∙ cos𝛼)

∙ (𝑞Gut + 𝑞Kette). 
(36) 

This obviously led again to an inhomogeneous differ-
ential equation of 1st order, as has been solved in the case 
of horizontal curves. For vertical curves as shown in Fig-
ure 14, the chain tension force 𝐹n at the end of the curve 
thus yields 

𝐹n = (𝐶G ∙ cos𝛼𝑛−1 + 𝐶H ∙ sin𝛼𝑛−1 + 𝐹n−1) ∙ e𝜁∙𝜇s∙𝛾
− 𝐶G ∙ cos𝛼𝑛 − 𝐶H ∙ sin𝛼𝑛 . (37) 

The arc angle of the curve element is denoted as 𝛾 
and will be calculated as the absolute value of the differ-
ence between input and output slope angle: 

𝛾 = |𝛼𝑛 − 𝛼𝑛−1| (38) 

The constants 𝐶G and 𝐶H are given by the equations 

𝐶G = (𝑞G + 𝑞K) ∙
1 − 𝜇S2

𝜇S2 + 1
∙  𝑅 ∙ 𝑔 (39) 

and 

𝐶H = (𝑞Gut + 𝑞Kette) ∙
2 ∙ 𝜁 ∙ 𝜇s
𝜇s2 + 1

∙  𝑅 ∙ 𝑔 (40) 

which represent the constant components of the force due 
to gravity (𝐶G) and the downhill force (𝐶H). 

 
Figure 14: Ascending vertical curve 
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3.3.2 BASIC EQUATIONS WITH ACCUMULATION 

If the vertical curve is loaded by an accumulation of 
the goods (Figure 15), the equations are required to be ad-
justed to the additional accumulation force component. 

 
Figure 15: Ascending vertical curve with accumulation 

The accumulation force can have a different sign de-
pending on the installation position of the curve. There-
fore the parameter 𝜉𝐸𝐵 is introduced, which will be de-
fined as follows: 

𝜉𝐸𝐵 =
𝛼𝑛 − 𝛼𝑛−1

|𝛼𝑛 − 𝛼𝑛−1|  (41) 

The sign of the slope angle 𝛼𝑛 and 𝛼𝑛−1, respective-
ly, is found according to Figure 16 directly from the verti-
cal component of the velocity vector (or the direction of 
motion). By using Equation (41), it follows that 𝜉𝐸𝐵 = 1 
for ascending and 𝜉𝐸𝐵 = −1 for descending curves. 

 

Figure 16: Determining the slope angle in vertical curves for 
(a) ascending and (b) descending curves. 

By using the parameter 𝜉𝐸𝐵, the equilibrium of forces 
in the tangential direction will be extended by the force 
component resulting from the friction coefficient 𝜇G be-
tween good and chain, yielding 

d𝐹 = d𝐹RK + 𝑅 ∙ 𝑔 ∙ dγ ∙ 𝑞K ∙ sin𝛼 + 𝜇G ∙ 𝑅 ∙ 𝑔 ∙
d𝛾 ∙ 𝑞G ∙ 𝜉𝐸𝐵 ∙ cos𝛼. (42) 

The equilibrium of forces in the radial direction cor-
responds to the one from Equation (31), and nothing 
needs to be added to the force components of Figure 13. 
The frictional force d𝐹RK between chain and the inner side 
of the curve is defined by Equation (33). By inserting 
Equations (32), (33) and (42) into each other and solving 
for d𝐹RK it follows that 

d𝐹Rad =
d𝐹
𝜁 ∙ 𝜇s

−
(dγ ∙ 𝑅 ∙ 𝑔) ∙ (𝑞Kette ∙ sin(𝛼))

𝜁 ∙ 𝜇s

−
(dγ ∙ 𝑅 ∙ 𝑔) ∙ (𝑞Gut ∙ 𝜇G ∙ 𝜉𝐸𝐵 ∙ cos𝛼)

𝜁 ∙ 𝜇s
. 

(43) 

After inserting Equation (43) into (31) and solving 
for the force 𝐹, a differential equation is found 

d𝐹
dγ
− 𝜇s ∙ 𝜁 ∙ 𝐹 = 𝑅 ∙ 𝑔 ∙ �𝑞Kette ∙ sin𝛼 + 𝜇G ∙ 𝑞Gut ∙

𝜉𝐸𝐵 ∙ cos𝛼 − 𝜁 ∙ 𝜇s ∙ cos𝛼 ∙ (𝑞Gut + 𝑞Kette)�.  
(44) 

The differential equation can be solved analogously 
to the equation of the vertical curve without accumulation. 

The calculation of the chain tension force 𝐹n at the 
end of the section can be carried out similarly to the case 
without accumulation as shown in Equation (37). Howev-
er, the constants 𝐶G and 𝐶H have to be adjusted to the dif-
ferent loading case, since they depend on the installation 
position for accumulation mode operation. They are given 
as 

𝐶G = �(𝜉𝐸𝐵 ∙ 𝜁 ∙ 𝜇s ∙ 𝜇G − 𝜇s2) ∙ 𝑞Gut + (1 − 𝜇s2)

∙ 𝑞Kette� ∙
𝑅 ∙ 𝑔
𝜇s2 + 1

  
(45) 

and 

𝐶H = �(𝜁 ∙ 𝜇s − 𝜉𝐸𝐵 ∙ 𝜇𝐺) ∙ 𝑞Gut + 2 ∙ 𝜁 ∙ 𝜇s ∙ 𝑞Kette�

∙
𝑅 ∙ 𝑔
𝜇s2 + 1

. 
(46) 

 

3.3.3 GENERAL FORMULATION OF VERTICALLY 
CURVED SECTIONS 

The loading cases considered aid to find a generally 
valid formulation for the chain tension force for vertically 
curved sections. Then, Equation (37) becomes: 

𝐹n = (𝐾G ∙ cos𝛼𝑛−1 + 𝐾H ∙ sin𝛼𝑛−1 + 𝐹n−1) ∙ e𝜁∙𝜇s∙𝛾
− 𝐾G ∙ cos𝛼𝑛 − 𝐾H ∙ sin𝛼𝑛. (47) 

The general parameters 𝐾G and 𝐾H with 

𝐾G = ��(𝜉𝐸𝐵 ∙ 𝜁 ∙ 𝜇s ∙ 𝜇G − 𝜇s2) ∙ 𝜉𝑆𝑡𝑎𝑢
+ (1 − 𝜇s2) ∙ (1 − 𝜉𝑆𝑡𝑎𝑢)� ∙ 𝑞Gut

+ (1 − 𝜇s2) ∙ 𝑞Kette� ∙
𝜉𝐸𝐵 ∙ 𝑅 ∙ 𝑔
𝜇s2 + 1

  
(48) 

𝐾𝐻 = ��(𝜁 ∙ 𝜇𝑠 − 𝜉𝐸𝐵 ∙ 𝜇𝐺) ∙ 𝜉𝑆𝑡𝑎𝑢 + 2 ∙ 𝜁
∙ 𝜇𝑠 ∙ (1 − 𝜉𝑆𝑡𝑎𝑢)� ∙ 𝑞𝐺𝑢𝑡 + 2 ∙ 𝜁 ∙ 𝜇𝑠

∙ 𝑞𝐾𝑒𝑡𝑡𝑒� ∙
𝑅 ∙ 𝑔
𝜇𝑠2 + 1

 . 
(49) 
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are deduced from both loading cases. In analogy to Sec-
tion 3.1.2, the accumulation parameter 𝜉𝑆 as defined by 
Equation (13) will be required. 

 

3.4 SECTIONS WITH DRIVE, DEFLECTION, OR 
SUPPORT WHEELS 

In all cases, chain conveyor systems contain drive 
and deflection wheels for vertical and/or horizontal 
curves. Occasionally, especially in the case of modular 
chains, there are wheels for supporting the return motion 
of the chain (lower chain run). Although they are usually 
mounted such that no relative motion is possible between 
the wheel and the chain, significant frictional losses may 
also occur here. Especially at the drive wheel or for heavy 
wheels in the lower chain run, strong forces on the shaft 
may lead to a significant friction torque. 

According to Figure 17, the wrapping of a wheel will 
cause a force on the shaft 𝐹W due to the chain tension 
force. In conjunction with the coefficient of friction in the 
bearing 𝜇𝑊 between wheel and bearing, this will lead to 
the frictional force 𝐹RW.  

 
Figure 17: Wrapping of the chain around a wheel 

For a defined wrap angle 𝛾𝑅 and by using the as-
sumption that 𝐹RW is relatively small, leading to an angle 
of the shaft force 𝐹W of about 𝛾𝑅/2, the value of 𝐹W can 
be calculated approximately as 

𝐹W ≈ 2 ∙ 𝐹𝑛−1 ∙
sin 𝛾𝑅2

𝑟𝑅𝑖
𝑟𝑅𝑎

∙ 𝜇𝑊 ∙ sin 𝛾𝑅2 − 1
 (50) 

In the special case of a complete 180°-wrapping, an exact 
solution of 𝐹W can be found: 

𝐹W = 2 ∙
𝐹𝑛−1

𝑟𝑅𝑖
𝑟𝑅𝑎

∙ 𝜇𝑊 − 1
 (51) 

From the equilibrium of momentum, and with the in-
side and outside radius of the pulley 𝑟𝑅𝑖  and 𝑟𝑅𝑎, the chain 
tension force at the end of the section (when exiting the 
wheel) can be calculated as 

𝐹n = 𝐹𝑛−1 + 𝐹𝑊 ∙ 𝜇𝑊 ∙
𝑟𝑅𝑖
𝑟𝑅𝑎

 (52) 

Supporting the chain in the lower chain run using 
wheels as shown in Figure 18 can be regarded as a special 
case. The calculation of the shaft force according to Equa-
tion (50) is not possible in that case, since the chain slack 
is usually unknown. In this case, a simplified estimation 
of 𝐹W can be found from the chain’s weight acting on the 
wheel, which reads as 

𝐹W ≈ 𝑞K ∙  
𝐿𝑛−1 + 𝐿𝑛

2
∙ 𝑔 (53) 

For the unknown chain lengths 𝐿𝑛−1 and 𝐿𝑛, the distances 
between the respective pulley and the neighboring pulleys 
or sections is used. 

 

Figure 18: Chain supported by wheels 

 

3.5 OTHER LOSSES 

Besides the partial sections discussed so far, addi-
tional losses may occur in a conveyor system, e.g. wall 
friction, jamming of the good at the lateral support, or ex-
ternal forces which cannot be captured in detail. Occa-
sionally, an elaborate and detailed calculation of certain 
partial sections of a system can be omitted in favor of a 
rough estimation of the frictional losses, if this appears to 
be sufficient. 

In such cases it is usually convenient to introduce an 
external force 𝐹𝐸𝑥𝑡 into the calculation, which leads to the 
following expression for the chain tension force 𝐹n: 

𝐹n = 𝐹𝑛−1 + 𝐹𝐸𝑥𝑡 (54) 

 

3.6 ADDITIONAL STEPS FOR DIMENSIONING 

Following the procedure above, the maximum chain 
tension 𝐹n_max can be calculated by summing up the indi-
vidual sections. In most cases the maximum tension is lo-
cated directly before the chain enters the drive sprocket. It 
should be noted that 𝐹n_max only contains the most signifi-
cant force components due to friction and lifting, which 
have to be overcome by the drive motor. This tension 
force is also called circumferential force 𝐹U and does not 
include any force components due to the pre-tension, 
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since pre-tensioning is uncommon with the conveyor sys-
tems discussed. Therefore the following holds for unten-
sioned chain conveyor systems 

𝐹𝑛_𝑚𝑎𝑥 = 𝐹𝑈, (55) 

while for pre-tensioned systems, additional components 
due to the pre-tension force have to be taken into account. 

For dimensioning a conveyor system, the calculated 
maximum chain tension force  𝐹n_max has to be compared 
with the admissible chain tension force 𝐹zul∗ . It should be 
noted that the calculation of 𝐹n_max as described before is 
carried out quasistatically and therefore is not able to cap-
ture all loads possible. Many suppliers therefore specify 
additional operational factors for particular operating con-
ditions.  Examples of such include factors for frequent 
start/stop events, control characteristics at start-up, veloci-
ties, as well as low or high process temperatures. The val-
ues thereof can be found in the supplier’s data sheets, and 
the associated notes should be accounted for. Using the 
factors, the adjusted chain tension at the drive 𝐹n∗ and the 
adjusted admissible chain tension 𝐹zul∗  can be found via 
the relation  

𝐹n_max
∗ ≤ 𝐹zul∗  (56) 

and compared to each other. If this condition is satisfied, 
the chain intended to be used can be considered suitable. 
Finally, for the dimensioning of the conveyor system, the 
required mechanical driving power has to be determined 
using the equation 

𝑃mech = 𝐹𝑈 ∙ 𝑣 (57) 

with the circumferential force 𝐹U and the transport 
speed 𝑣. 

Additional components of the conveyor system such as 
chain sprockets, support structures and support rollers are 
strongly dependent on the chain type and their eligibility 
has to be evaluated based on the supplier’s specification.  

In addition to the given mechanical layout criteria, a 
temperature rise due to frictional heat should be regarded 
as particularly critical, especially in sections with horizon-
tal sliding curves. The heating has a strongly negative im-
pact on the mechanical properties and the wear especially 
for plastic chains and plastic slide rails. It may lead to 
melting and the total failure of the construction element. 
The ifk of TU Chemnitz is currently developing calcula-
tion approaches for such cases. 

4 COMPARISON OF CALCULATION APPROACHES OF 
SLIDING CHAIN AND MODULAR BELT CONVEYORS 

As shown above, straight sections and slopes of 
modular belt conveyors including vertical curves can be 

calculated reliably using the existing equations for mul-
tiflex and slat top chain (e.g. according to AUERBACH 
[Aue06]). However, the basic principle is the simplified 
assumption that the chain can be regarded as a rope, 
where the point of the force and the support merge in a 
single point each. Modular chains, however, show a broad 
transversal extent. For horizontal curves, significantly dif-
ferent radii of the force exertion (outside) and the support 
(inside) will thus occur. 

Figure 19 shows a comparison between the chain ten-
sion in a conveyor system with modular belts calculated 
according to [Aue06] and according to the new approach. 
It can be easily seen that the same frictional losses result 
from both methods for straight sections of the curve. 
However, for horizontal curves, the new method shows 
significantly smaller losses, i.e. the conveyor will be 
overdesigned when using [Aue06]. Due to the exponential 
increase of the chain tension in such curves and the strong 
dependence on the force at the beginning of the curve, the 
largest errors occur for large wrap angles as well as at the 
end of the conveying sections. 

 

Figure 19: Comparison of the chain tension in modular belt 
conveyors calculated with different approaches 

In the following, the influence of different parameters 
on the differences between the calculation approaches will 
be investigated. The following assumptions for a horizon-
tal curve segment have been made and applied to the ex-
amples shown in Table 1 through Table 5, whereas one of 
the parameters is varied in each: 

• specific weight of the chain: 𝑞𝐾 = 5 kg/m 

• chain width:  𝑏 = 500 mm 

• curve angle:  𝜑 = 90° 

• outer curve radius*: 𝑅𝑎 = 1000 mm 

• specific weight of the good: 𝑞𝐺 = 0 kg/m  

• friction coefficient chain - rail: 𝜇𝑆 = 𝜇𝐾 = 0,25 

• chain tension before the curve: 𝐹𝑛−1 = 0 N 

*) The outer radius is used as the basis for comparison, such 
that both methods use the same chain length and chain weight. 
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The results shown in Table 1 and Table 2 confirm the 
statement above that the most significant deviations occur 
for large wrap angles and large forces at the beginning of 
the curve. This result affects particularly long, heavily 
loaded, as well as winding conveying sections, e.g. as 
found in spiral conveyors. 

 

 

Table 1: Comparison of calculation methods for horizontal 
curves for different curve angles 

curve 
angle  
𝜑 [°] 

change of chain tension 
 𝐹𝑛 − 𝐹𝑛−1 [N] 

difference 
to 

 [Aue06] 
[Aue06] NEW 

90 23,6 21,3 -9,8% 

180 58,5 47,2 -19,4% 

360 187 117,1 -37,4% 

720 1086 373,8 -65,6% 
 

Table 2: Comparison of the calculation methods for horizontal 
curves for different forces at the beginning of the curve 

chain 
tension  
𝐹𝑛−1 [N] 

change of chain tension 
 𝐹𝑛 − 𝐹𝑛−1 [N] 

difference 
to 

 [Aue06] 
[Aue06] NEW 

0 23,6 21,3 -9,8% 

50 47,6 32,2 -32,6% 

100 71,7 43 -40% 

500 264,1 129,8 -50,9% 
 

The loading of the conveyor with goods solely affects 
the absolute value of the increase of the force within the 
curve, whereas the relative error between both methods 
remains constant (Table 3). Contrary to that result, a 
change in curve radius has no effect on the absolute value 
of the difference. Thus, the relative error increases for 
small changes of the force, as they occur for small radii 
(Table 4). 

Table 3: Comparison of the calculation methods for horizontal 
curves for different good weights 

specific 
good 

weight 
𝑞𝐺𝑢𝑡 [kg/m] 

change of chain tension 
𝐹𝑛 − 𝐹𝑛−1 [N] 

difference 
to 

 [Aue06] 
[Aue06] NEW 

0 23,6 21,3 -9,8% 

5 47,2 42,6 -9,8% 

10 70,8 63,9 -9,8% 
 

 

 

 

Table 4: Comparison of calculation methods for horizontal 
curves for different curve radii 

outer 
radius 
𝑅𝑎 [mm] 

change of chain tension 
𝐹𝑛 − 𝐹𝑛−1 [N] 

difference 
to 

[Aue06] 
[Aue06] NEW 

750 17,7 15,4 -12,8% 

1000 23,6 21,3 -9,8% 

1500 35,4 33 -6,7 

3000 70,8 68,4 -3,4 
 

The influence of the friction coefficient should not be 
underestimated. The error in the calculation increases with 
an increasing radial friction coefficient 𝜇𝐾 (Table 5). On 
the other hand, the relative error is not affected by the fric-
tion coefficient between chain and vertical slide rail µS. 

Table 5: Comparison of calculation methods for horizontal 
curves for different friction coefficients chain – slide rail 

curve 
friction  
𝜇𝐾 [1] 

change of chain tension 
𝐹𝑛 − 𝐹𝑛−1 [N] 

difference 
to 

 [Aue06] 
[Aue06] NEW 

0,1 20,9 20 -3,9% 

0,25 23,6 21,3 -9,8% 

0,4 26,8 22,6 -15,6% 
 

5 CONCLUSION 

In this paper, a derivation of a general calculation ap-
proach for sideflexing chain conveyer systems has been 
presented. One of the bases of this work was the work of 
AUERBACH [Aue06] on the calculation of narrow chain 
systems. By taking into account the chain width, an im-
provement has been achieved which allows considering 
different radii which the force is acting on, as well as the 
radial support for horizontal redirections. 

The new equations are particularly beneficial especially 
for conveyor systems with modular belts, where up to 
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now the dimensioning could be highly error-prone under 
certain conditions. However, narrow chains such as slat 
top or multiflex chains can still be calculated using the 
method by setting the chain width 𝑏K = 0. For this special 
case the results are equal to [Aue06]. 

In addition, the basic calculations have been extended by 
sections with edges as well as external forces, which were 
not integrated so far. 

Due to the multitude of load cases possible within straight 
and curved sections of the conveyor system, a calculation 
by hand becomes highly complicated, especially for com-
plex layouts. Therefore, the use of a computer is advisa-
ble. For this purpose, the equations for different sections 
were combined into single formulas, which may be easily 
implemented into a PC program. 

 

REFERENCES 

[Aue06]  Auerbach, Peter: Zur Beanspruchung und Le-
bensdauer raumgängiger Gleitketten aus 
Kunststoffen, Technische Universität Chem-
nitz, Diss., 2006. 

[BR12]  Bosch Rexroth AG (Hrsg.): Kettenfördersys-
teme - VarioFlow. Ausgabe 4.4, 2012, Internet 
Download www.boschrexroth.com, 
03.09.2013. 

[Hab13]  Habasit AG (Hrsg.): Technischer Leitfaden - 
HabasitLINK - Modularbänder. Internet 
Download www.habasit.com, 03.09.2013. 

[Int13]  Intralox, L.L.C. Europe (Hrsg.): Konstrukti-
onshandbuch für Förderbänder, Ausgabe 2013. 

[Ra12] Rasch, F.: Reibungsminderung an Stütz- und 
Führungselementen für Kunststoffketten. Diss. 
TU Chemnitz. Verlag Dr. Hut, 2012, ISBN 
978-3-8439-0574-9. 

[Sch08]  Schüco International KG (Hrsg.): Transport-
technik, Bestell- und Fertigungskatalog 4.0, 
Ausgabe 2008. 

 

 

Dr.-Ing. Jens Sumpf, Group Leader „Traction Mecha-
nisms and Tribology“, Institute of Material Handling, 
Conveying and Plastics Engineering, Chemnitz University 
of Technology.  

Phone: +49 371 531-32853 
E-Mail: jens.sumpf@mb.tu-chemnitz.de 
Web: www.gleitketten.de 

Dr.-Ing. Hagen Bankwitz, Scientific Assistant, Institute 
of Material Handling, Conveying and Plastics Engineer-
ing, Chemnitz University of Technology. 

Phone: +49 371 531-37529 
E-Mail: hagen.bankwitz@mb.tu-chemnitz.de 
Web: www.gleitketten.de 

Prof. Dr.-Ing. Klaus Nendel, Head of Department, Insti-
tute of Material Handling, Conveying and Plastics Engi-
neering, Chemnitz University of Technology. 

Phone: +49 371 531-32323 
E-Mail: klaus.nendel@mb.tu-chemnitz.de 
Web: www.tu-chemnitz.de/mb/FoerdTech 

Dr.-Ing. Frank Rasch, Manager Flat Top Chains, iwis 
antriebssysteme GmbH, Wilnsdorf. 

Phone: +49 2739 86-70 
E-Mail: frank.rasch@iwis.com 
Web: www.iwis.com 

 

http://nbn-resolving.de/urn:nbn:de:0009-14-40310

	1 Introduction
	2 Known Calculation Methods and Challenges with Modular Belts
	3 Load Model and Dimensioning
	3.1 Straight Section
	3.1.1 Loading Cases
	3.1.2 General Equations for Straight Sections
	3.2 Horizontally Curved Section
	3.2.1 Determining the Radial Force for Horizontal Curves
	3.2.2 Derivation of the Basic Equations for the Chain Tension Force
	3.2.3 Loading Cases for Calculating the Outer Line Load in Horizontal Curves
	3.2.4 General Formulation of Horizontally Curved Sections
	3.3 Vertically Curved Sections
	3.3.1 Basic Equation without Accumulation
	3.3.2 Basic Equations with Accumulation
	3.3.3 General Formulation of Vertically Curved Sections
	3.4 Sections with Drive, Deflection, or Support Wheels
	3.5 Other Losses
	3.6 Additional Steps for Dimensioning
	4 Comparison of Calculation Approaches of Sliding Chain and Modular Belt Conveyors
	5 Conclusion
	References

