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In this paper a superelement formulation for geometric nonlinear finite element analysis is
proposed. The element formulation is based on matrices generated by the static condensation algorithm.
After defining the element characteristics, a method for the calculation of the element forces in a large
displacement and rotation analysis is developed. In order to use the element in the solution of stability
problems, the formulation of the geometric stiffness matrix is derived. An example shows the benefits of
the element for the calculation of lattice-boom cranes.

1. Introduction

Lattice-boom cranes are tall, slender structures with acute-angled suspensions. They show a strong nonlinear
behaviour near their load limits. In practice the analysis of these cranes is done quasistatic as specified in DIN
15018 T3 [DIN84] and DIN EN 13000 [DINO4] respectively.

The quasistatic analysis method represents the dynamic loading only by approximation. For this reason the
European standards allow dynamic analysis methods as well: "Alternatively advanced and recognized theoretical
or experimental methods (e.g. elastokinetic analysis for the simulation of load effects) ... may be used in
general." [DINO4].

Figure 1: Finite element model of a lattice-boom crane
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Figure 1 shows an example of a finite element model of a lattice-boom crane. The beam model of the lattice-
booms consists of 200 to 2000 nodes, depending on the boom configuration. In contrast to this relatively small
model part, the shell models of the superstructure and the carrier have up to 40000 nodes [Kleeberger96,
Gunthner97].

Lattice-boom cranes are built according to the modular design principle. This allows a variety of boom lengths,
boom combinations and boom positions. The calculation of all lifting capacities requires up to 2000000 program
runs [Gilinthner00-1, Giinthner00-2, Webhofer05]. By using model sizes as mentioned above this cannot be done
in a reasonable amount of time. So the model size must be reduced. In industrial practice the boom sections are
mapped to single beam elements. The superstructure and carrier stiffness is represented by springs.

A more accurate reduction technique is static condensation. It is suitable for linear systems, such as the very stiff
superstructure and carrier models. But this technique cannot be used directly for the calculation of the geometric
nonlinear boom models. However, if looked on separately every single boom section fulfils small displacement
conditions. So the intention is to develop a superelement formulation for geometric nonlinear finite element
analysis. The element should be based on matrices generated by the static condensation algorithm.

2. Static condensation algorithm

The basic idea of static condensation [Bathe96, Szilard82] is to reduce the number of nodes of a finite element
model part by condensing out all inner nodes. Only nodes connecting the model part to other model parts are
retained. Figure 2 shows the connection nodes of a lattice-boom section model.

Figure 2: Connection nodes of a lattice-boom section model

The static condensation method applies to linear systems. In order to establish the equations, we assume that the
stiffness matrix and corresponding displacement and force vectors are partitioned into the form

K; | K, u; R,

el I | EE B €D
K, | K u R

cl cc c c

where u; and u, are the vectors of displacements to be retained and condensed out, respectively. The matrices K,
K. and K. and the vectors of external forces R; and R. correspond to the displacement vectors u; and ..

Using the second matrix equation in (1), we obtain:

u =K, (R, —K,u,) @

Equation (2) is used to substitute for u, into the first matrix equation in (1) to obtain the condensed equations
K'-u,=R,-K,. K. R ®)

with
K'=K,-K, -K, K, 4)
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The condensed stiffness matrix K~ is used in the analysis of the overall model. In subsequent program runs the
displacement vector . and so the element forces and stresses can be evaluated for all condensed model parts. For
linear systems no loss of accuracy occurs.

3. Nonlinear equation of motion

In contrast to a linear analysis, a nonlinear analysis must be performed by incremental steps. Equation (5) shows
the transition from a known state at time ¢ to the state at time #+4¢. In general equilibrium iterations must be
performed at time 7+4¢ [Bathe96].

M-"Mi+D-"Mi+'K-u=""R~"'F (5)

t+At t
U= u+tu

with

M:  mass matrix

D: damping matrix

‘K:  tangent stiffness matrix at time ¢
vector of external loads at time ¢+A4¢
‘F= vector of element forces at time ¢
vector of displacements at time ¢+4¢
u: vector of displacements at time ¢

u: vector of incremental displacement

The tangent stiffness matrix ‘K consists of the linear stiffness matrix ‘’K; and the geometric stiffness matrix ‘K, :
'‘K="K,+'K,, (6)

The linear stiffness matrix is determined by the material and dimensions of the structure. The geometric stiffness
matrix takes into account the effects of stresses on the structure's stability.

4, Superelement formulation for geometric nonlinear analysis

Based on the matrices obtained by static condensation, a superelement formulation is developed for static and
dynamic geometric nonlinear analysis. The element has the following fundamental features:
e The element has at least three nodes; the total number of nodes N is unlimited
Each element node has three translational and three rotational degrees of freedom
Large displacements and rotations are allowed
The element deformation remains small
The element must be suitable for the solution of stability problems. I.e. the geometric stiffness matrix
formulation is developed

4.1.  Positioning problem

Figure 3 shows as an example a four node superelement in its initial state at time 0 and in its state at time ¢. The
positions of the nodal points are given by the vector

®

x= i xU=ly U]

=

respective to the global coordinate system.
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Figure 3: Initial state and state at time ¢

Since the element can undergo large displacements and rotations, we have to separate the rigid body motion
from the element deformation. The position vector at time ¢ of the node i is given by

O Ty g0 ®)

rigidbody motion deformation

with
't - rigid body translation vector
'T: rotary matrix

The rigid body motion should put the node positions of the originally shaped element as near as possible to their

positions at time ¢. One way to fulfill this condition is to minimize the displacement vector ‘d, which denotes the
deformation of the element:

d

oy 21070 Smin - (9)
=L

By referencing ‘x and ’x to the center of the element, equation (9) can be transformed into the following
problem of maximization [Nichter02, Horn87]:

N
i=1

The rotary matrix T is expressed by the unit quaternion g [Blaschke60]:

T ”z(’)‘ > Max (10)

¢,=cos(p/2)
q,=n, 'Sin(€0/2)
qS:ny-Sin((p/Z)
q,=n; ‘Sin(CD/ 2)

Gras-ai-qa;  Aq0:+9.9) 249, —9:9,)
T=| 24,95-9.41) @ -ai+a:-da;  2q:4, +42a) (11)
2(‘]2‘14 +413611) 2(‘13‘14_%‘11) %2 _qg _%2 +61§

Using the quaternion ¢ equation (10) can be transformed to

‘q"-N-'q—Max (12)
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with
Sip+85 + 85 Sps— Sy S31— 813 S, =8y
N= st _Ssz S11 _Szz _S33 S12 +521 SlS +S31
S31— S5 Sip + Sy So =81 =85 Sy Sy
S12 - S21 S13 + S31 st + Ssz S33 - S11 - Szz

According to [Horn87] the required quaternion ‘g is the eigenvector corresponding to the greatest eigenvalue of
the following eigenproblem:

(N-21)-'q=0 (13)

The solution of equation (13) yields the rotary matrix ‘T('q). The element deformation in the local coordinate
system is given by the displacement vector 'd, :

dV=1(g x4

4.2. Local rotations

In order to obtain the local rotations of the element nodes a quaternion gy is assigned to each node. In the initial
state at time # = 0 all quaternions gy are set equal to the quaternion “g which defines the orientation of the local
coordinate system. The quaternions ‘gy at time ¢ only depend on the solution of the equation of motion (5).

Orientation of

Orientation of nodes at time ¢

the local tq%)
coordinate -
system

Orientation of
nodes at time 0

“q\) = "1

Figure 4: Orientation of nodes
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The element deformation caused by the rotation of nodes at time ¢ is the difference between the rotations given
by the quaternions ‘gy and the quaternion ‘g, which defines the orientation of the local coordinate system at time
t

t (1)

v —'Iva Ay~ 'Uva ‘q
¢ () _ "Iz [qu - t‘]/v4 t‘]/vs ) [‘12 (15)
gDif[ | ' ' ' '
7 N3 dna 9 ~ 4wz q3
qu4 - th3 thZ thl [‘14

Provided that the element deformation remains small, equation (15) can be linearized:
() (@)
t

. (%] 'q 2,Diff
tf([) ='p, | =2 th,Di/f’ (16)
t¢’3 tQA,Diff

4.3. Calculation of element forces

The element forces ‘F; in local coordinates are determined by the local displacements and rotations ‘u; and the
stiffness matrix K:

tEL :K*'IEL A7)
with
‘u 'F)
tﬂL = P E=|
t_(LN) tE(LN)
[d(i) tT( t (l) o (1)
. q) x'="x
u) = - |=| -
¢ (@) ;(p(i)

The element forces respective to the global coordinate system are given by
tE _ tfr'tEL (18)
with

T =diag('T),y

4.4.  Superelement stiffness matrix

The tangent stiffness used in equation (5) corresponds to the derivative of the global element forces ‘£ with
respect to the nodal point displacements ‘u [Bathe96]:

'K = (19)

0'u
Substituting the superelement forces defined in (17) into (18) yields:

~ ~ T
-~ . - tnT t
’KszT.K.fTJra,T .’EL+ a_,T'tEL (20)

K NL

The first part of (20) is the linear element stiffness matrix K~ transformed to the global coordinate system. The
second part only depends on the element position and the element forces; this is the geometric stiffness matrix.

© 2006 Logistics Journal : Referierte Veroffentlichungen — ISSN 1860-7977 Seite 6



DOI 10.2195/L) Ref E_Kleeberger 122006

The rotary matrix ‘T is determined by displacements, not rotations. Since the variation of ‘u corresponds to the
variation of x, the derivatives of the components of ‘T given in (11) are:

o', _0'T, d4q 04q
— - L __4 . 4 + . 3
a tz a tz q4 a tz q3 6 tz
0'T, 0'Ty, 0q 0q 0q 04q
Zta_Z a9 il ¢ TR & SN & S M £ 21
P ,2 5 ,E q> ,_ qs3 P tl qs P II q; P) t)_c (21)
Differentiating equation (5) on side condition that ‘g is a unit vector yields:
4| _ON,
. 2
o' (N-21) | ‘g oy 2
ot I I N (22)
0'x
= ‘¢ | 0 0

By substituting equation (22) into (21) the geometric stiffness matrix can be evaluated.

5. Example of use

The superelement formulation was implemented in the finite element program NODYA [Kleeberger04]. Figure
5 shows the model of the lattice boom crane used for testing. It consists of the carrier, superstructure and main
boom. The model generation, static condensation and postprocessing was done using I-DEAS [Unigraphics04].

In order to compare a conventional finite element model with the superelement formulation, a nonlinear static
analysis of load case H (gravitational forces, hoisting and slewing forces) was performed by NODYA.
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Figure 5: Test system

Table 1 shows the number of degrees of freedom of the original and condensed model parts. The best reduction
rate is achieved for the carrier and superstructure. The overall reduction is from 69162 degrees of freedom to

798.
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Table 1: structural data

original model superelement
carrier 43740 252
superstructure 23028 222

foot section 246 36

boom extension 222 48

boom section 6m 288 48

boom section 12m 402 48

adapter top section  [222 48

top section 330 60

The comparison is made between the original boom model with condensed carrier and superstructure and the
overall superelement model. Figure 6 shows the results for two different main boom angles.

120%

100% 100% oo 100%  ggos 100%

80%

O Original
model

B Superelement|
model

60% —

40% A

17%

Displacment of boom tip, load Displacment of boom tip, load cputime
case H, boom angle 85° case H, boom angle 75°

20%
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Figure 6: Example results

The results show a minimal loss of accuracy and a significant reduction of cpu-time.

Further tests concerning the behaviour of the superelement in dynamic analysis and a comparison of the results
with multi-body simulation programs (e.g. Adams [Adams05]) is planned.

6. Conclusion

The overall calculation of load capacities of lattice-boom cranes requires small finite element models. The
superelement presented in this paper offers a sophisticated reduction technique that meets the requirements of
geometric nonlinear analysis. The element significantly reduces the calculation time and causes a negligible loss
of accuracy. The direct coupling of reduced and original models insures the consistency and allows the
evaluation of forces and stresses in subsequent program runs.
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