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In this paper a superelement formulation for geometric nonlinear finite element analysis is 
proposed.  The element formulation is based on matrices generated by the static condensation algorithm. 
After defining the element characteristics, a method for the calculation of the element forces in a large 
displacement and rotation analysis is developed. In order to use the element in the solution of stability 
problems, the formulation of the geometric stiffness matrix is derived. An example shows the benefits of 
the element for the calculation of lattice-boom cranes. 

1. Introduction 
Lattice-boom cranes are tall, slender structures with acute-angled suspensions. They show a strong nonlinear 
behaviour near their load limits. In practice the analysis of these cranes is done quasistatic as specified in DIN 
15018 T3 [DIN84] and DIN EN 13000 [DIN04] respectively. 
 
The quasistatic analysis method represents the dynamic loading only by approximation. For this reason the 
European standards allow dynamic analysis methods as well: "Alternatively advanced and recognized theoretical 
or experimental methods (e.g. elastokinetic analysis for the simulation of load effects) ... may be used in 
general." [DIN04]. 
 

 
Figure 1: Finite element model of a lattice-boom crane 
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Figure 1 shows an example of a f am model of the lattice-
ooms consists of 200 to 2000 nodes, depending on the boom configuration. In contrast to this relatively small 

ns and boom positions. The calculation of all lifting capacities requires up to 1000000 program 

e geometric 

basic o reduce the number of nodes of a finite element 
l part nnecting the model part to other model parts are 

 
Figure 2: Connection nodes of a lattice-boom section model 

 
The static condensation method s, we assume that the 

iffness matrix and corresponding displacement and force vectors are partitioned into the form 

⎠
⎜
⎝

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ ccccci RuKK |

where ui and uc are the vectors of displacements to be retained and cond t, respectively. The matrices Kii, 
Kic and Kcc and the vectors of external forces Ri and Rc correspond to the displacement vectors ui and uc. 

inite element model of a lattice-boom crane. The be
b
model part, the shell models of the superstructure and the carrier have up to 40000 nodes [Kleeberger96, 
Günthner97]. 
 
Lattice-boom cranes are built according to the modular design principle. This allows a variety of boom lengths, 

oom combinatiob
runs [Günthner00-1, Günthner00-2, Webhofer05]. By using model sizes as mentioned above this cannot be done 
in a reasonable amount of time. So the model size must be reduced. In industrial practice the boom sections are 
mapped to single beam elements. The superstructure and carrier stiffness is represented by springs.  
 
A more accurate reduction technique is static condensation. It is suitable for linear systems, such as the very stiff 
uperstructure and carrier models. But this technique cannot be used directly for the calculation of ths

nonlinear boom models. However, if looked on separately every single boom section fulfils small displacement 
conditions. So the intention is to develop a superelement formulation for geometric nonlinear finite element 
analysis.  The element should be based on matrices generated by the static condensation algorithm. 

2. Static condensation algorithm 
The  idea of static condensation [Bathe96, Szilard82] is t
mode  by condensing out all inner nodes. Only nodes co
retained. Figure 2 shows the connection nodes of a lattice-boom section model. 

applies to linear systems. In order to establish the equation
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Using the second matrix equation in (1), we obtain: 

( )icicccc RKu ⋅= uK ⋅−−1   (2) 

Equation (2) is used to substitute for uc into the first matrix equation to ob  the condensed equations  in (1) tain

cccicii RKKRuK ⋅⋅−=⋅  (3) −1*

with 

  (4) ciccicii KKKKK ⋅⋅−= −1*
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The condensed stiffness matrix K* is used in the analysis of the ll mo  subsequent program runs the 
displacement vector uc and so the element forces and stresses can aluate ll condensed model parts. For 

 of motion 
rformed by incremental steps. Equation (5) shows 

sitio Δt. In general equilibrium iterations must be 

overa del. In
be ev d for a

linear systems no loss of accuracy occurs. 

3. Nonlinear equation
In contrast to a linear analysis, a nonlinear analysis must be pe
the tran n from a known state at time t to the state at time t+
performed at time t+Δt [Bathe96]. 

FRuKuDuM tttttttt −=⋅+⋅+⋅ Δ+Δ+Δ+ &&&  (5) 

uuu ttt +=Δ+  

with 

M:  mass matrix 
D:  damping matrix 

ess matrix at time t tK:  tangent stiffn
t+ΔtR:  l loads at time t+Δt vector of externa
 tF:  vector of element forces at time t 
t+Δtu:  vector of displacements at time t+Δt 
tu:  vector of displacements at time t 
 u:  vector of incremental displacement 
 

ent s fness matrix The tang tif stiffness matrix tKL and the geometric stiffness matrix tKNL: 

The linear stiffness matrix is determined by the material and ructure. The geometric stiffness 
matrix takes into account the effects of stresses on the structu

ic nonlinear analysis 
d on  
mic g

f stability problems. I.e. the geometric stiffness matrix 

4.1. lem 
3 s  superelement in its initial state at time 0 and in its state at time t. The 
ns o vector  

tK consists of the linear 

NL
t

L
tt KKK +=  (6) 

dimensions of the st
re's stability. 

4. Superelement formulation for geometr
Base the matrices obtained by static condensation, a superelement formulation is developed for static and
dyna eometric nonlinear analysis. The element has the following fundamental features: 

• The element has at least three nodes; the total number of nodes N is unlimited  
• Each  element node has three translational and three rotational degrees of freedom  
• Large displacements and rotations are allowed 
• The element deformation remains small 
• The element must be suitable for the solution o

formulation is developed 

Positioning prob
Figure hows as an example a four node
positio f the nodal points are given by the 
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respective to the global coordinate system.  
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Figure 3: Initial state and state at time t 

 
Since the element can undergo large displacements and rotations, we have to separate the rigid body motion 
from the element deformation. The position vector at time t of the node i is given by 

 
32144 344 21

ndeformatio

)(

motionbodyrigid

)()( itioTttit dxTtx +⋅+=    (8) 

with  
 tt : rigid body translation vector 

tT: rotary matrix 
 
The rigid body motion should put the node positions of the originally shaped element as near as possible to their 
positions at time t. One way to fulfill this condition is to minimize the displacement vector td, which denotes the 
deformation of the element: 
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By referencing tx  and 0x  to the center of the element, equation (9) can be transformed into the following 
problem of maximization [Nüchter02, Horn87]: 
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The rotary matrix T is expressed by the unit quaternion q [Blaschke60]: 
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Using the quaternion q equation (10) can be transformed to 

Max→⋅⋅ qNq tTt   (12) 
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According to [Horn87] the required quaternion tq is the eigenvector corresponding to the greatest eigenvalue of 
the following eigenproblem: 

( ) 0=⋅− qIN tλ   (13) 

The solution of equation (13) yields the rotary matrix tT(tq). The element deformation in the local coordinate 
system is given by the displacement vector tdL: 

( ) ( ) ( )ioittti
L

t xxqTd −⋅= )(  (14) 

 

4.2. Local rotations 
In order to obtain the local rotations of the element nodes a quaternion qN is assigned to each node. In the initial 
state at time t = 0 all quaternions qN are set equal to the quaternion 0q which defines the orientation of the local 
coordinate system. The quaternions tqN at time t only depend on the solution of the equation of motion (5). 
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Figure 4: Orientation of nodes 
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The element deformation caused by the rotation of nodes at time t is the difference between the rotations given 
by the quaternions tqN  and the quaternion tq, which defines the orientation of the local coordinate system at time 
t: 
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Provided that the element deformation remains small, equation (15) can be linearized: 
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4.3. Calculation of element forces 
The element forces tFL in local coordinates are determined by the local displacements and rotations tuL and the 
stiffness matrix K*: 

L
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L
t uKF ⋅= *   (17) 
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The element forces respective to the global coordinate system are given by 

L
tTtt FTF ⋅= ˆ   (18) 

with 

N
tt TdiagT 2)(ˆ =  

4.4. Superelement stiffness matrix 
The tangent stiffness used in equation (5) corresponds to the derivative of the global element forces tF with 
respect to the nodal point displacements tu [Bathe96]: 

u
FK t

t
t

∂
∂

=   (19) 

Substituting the superelement forces defined in (17) into (18) yields: 
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The first part of (20) is the linear element stiffness matrix *K transformed to the global coordinate system. The 
second part only depends on the element position and the element forces; this is the geometric stiffness matrix. 
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The rotary matrix tT is determined by displacements, not rotations. Since the variation of tu corresponds to the 
variation of tx, the derivatives of the components of  tT given in (11) are: 
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Differentiating equation (5) on side condition that tq is a unit vector yields: 
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By substituting equation (22) into (21) the geometric stiffness matrix can be evaluated. 

5. Example of use 
The superelement formulation was implemented in the finite element program NODYA [Kleeberger04]. Figure 
5 shows the model of the lattice boom crane used for testing. It consists of the carrier, superstructure and main 
boom. The model generation, static condensation and postprocessing was done using I-DEAS [Unigraphics04].  
 
In order to compare a conventional finite element model with the superelement formulation, a nonlinear static 
analysis of load case H (gravitational forces, hoisting and slewing forces) was performed by NODYA. 

 
Figure 5: Test system 

 
Table 1 shows the number of degrees of freedom of the original and condensed model parts. The best reduction 
rate is achieved for the carrier and superstructure. The overall reduction is from 69162 degrees of freedom to 
798. 
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Table 1: structural data 

--- original model superelement 
carrier 43740 252 
superstructure 23028 222 
foot section 246 36 
boom extension 222 48 
boom section 6m 288 48 
boom section 12m 402 48 
adapter top section 222 48 
top section 330 60 

 
 
The comparison is made between the original boom model with condensed carrier and superstructure and the 
overall superelement model. Figure 6 shows the results for two different main boom angles. 
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case H, boom angle 85° 

Displacment of boom tip, load
case H, boom angle 75° 

cpu time

Original
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model

 
Figure 6: Example results 

 
The results show a minimal loss of accuracy and a significant reduction of cpu-time. 
 
Further tests concerning the behaviour of the superelement in dynamic analysis and a comparison of the results 
with multi-body simulation programs (e.g. Adams [Adams05]) is planned. 
 

6. Conclusion 
The overall calculation of load capacities of lattice-boom cranes requires small finite element models. The 
superelement presented in this paper offers a sophisticated reduction technique that meets the requirements of 
geometric nonlinear analysis. The element significantly reduces the calculation time and causes a negligible loss 
of accuracy. The direct coupling of reduced and original models insures the consistency and allows the 
evaluation of forces and stresses in subsequent program runs. 
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