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Abstract 
 
Telescopic systems of structural members with clearance are found in many applications, 

e.g., mobile cranes, rack feeders, fork lifters, stacker cranes (see Figure 1). Operating these 
machines, undesirable vibrations may reduce the performance and increase safety problems. 
Therefore, this contribution has the aim to reduce these harmful vibrations. For a better 
understanding, the dynamic behaviour of these constructions is analysed. The main interest 
is the overlapping area of each two sections of the above described systems (see markings in 
Figure 1) which is investigated by measurements and by computations. A test rig is 
constructed to determine the dynamic behaviour by measuring fundamental vibrations and 
higher frequent oscillations, damping coefficients, special appearances and more. For an 
appropriate physical model, the governing boundary value problem is derived by applying 
Hamilton’s principle and a classical discretisation procedure is used to generate a coupled 
system of nonlinear ordinary differential equations as the corresponding truncated 
mathematical model. On the basis of this model, a controller concept for preventing harmful 
vibrations is developed. 

 
 

Fig.1: Graduated multi-section systems with clearance 
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1. Introduction 
 

Graduated multi-section systems of structural components extending and retracting inside each 
other are interesting technical systems. They are found, e.g., in mobile cranes, rack feeders, fork 
lifters, stacker cranes (see Figure 1). As the main duty of these machines is not driving around but 
loading and unloading goods to and from racks, trucks etc., a great number of acceleration and 
deceleration operations occur. Combined with the extending and retracting motion of the sections, 
bending vibrations of the system perpendicular to the telescopic axis occur. These vibrations lead 
to a significant reduction of the performance due to the required waiting time for relaxation and to 
safety problems so that controlled vibration suppression seems to be necessary. 

The objective of the present paper is to develop a controller concept for preventing harmful 
vibrations. First, a system without clearance and with a fixed telescopic length which can be 
characterized by a time-invariant system of linear differential equations, is reduced to its 
dominating modes. Using this reduced model, a concept of state control via pole placement is 
designed which exhibits the desired effects. Introducing a so-called Luenberger observer, 
straightforward measurements of the motion of the telescope base and of the control variable of the 
actuator are sufficient to operate the controller. For real telescopic operations an adaptive 
controller and observer are introduced. The controller, developed for the reduced linear system 
model, is applied to the significantly more complicated system with clearance for studying the 
influence of clearance on the vibration suppression during telescopic motions.  

 

2. Test Rig 
As seen in Figure 1, the appearance of graduated telescopic multi-section systems with 

clearance can be very different. Nevertheless the main problem can be concentrated to the 
overlapping area of each two sections (see markings in Figure 1). Only the orientation in space is 
different as shown in the functional sketch of the system (Figure 2). This sketch leads on the one 
hand to an appropriate test rig and on the other hand to an appropriate physical model. 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 2: Sketch of the main item – the overlapping area 
 
 

The test rig, as shown in Figure 3 consists of two sections, made of slender steel-beams. The 
lower section is fixed to a rigid block on the ground; the upper section is connected to the lower 
section with screws. For choosing an assembly without clearance or with a well defined clearance, 
a special system of sliding bolts and bushes is used to reduce friction to a minimum and to enable 
free translation and rotation movement. This test rig is made of elements with a very simple 
geometry, because the elastic properties of these elements are well known and the measurement 
results are comprehensible. 
 

Main interest: overlapping area of two sections. 
Difference: orientation in space. 
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Fig. 3: Test rig 
 

In the following, two typical assemblies are shown in two movies. Movie 1 shows the dynamic 
behaviour of a two-sectional graduated system without clearance. On the left side, you can see the 
whole test rig, in the upper window, the overlapping area can be seen and in the lower window, the 
development of the vibrations can be observed, presented by the acceleration signals of the 
sections tips. The movie is shown in slow-motion; the fundamental frequency is 0.53Hz. As 
expected, the vibration development is absolutely harmonic. 

 

 
 

 Mov. 1: System without clearance 
 

overlapping area
with/without clearance 

Stimul

 

stimulation

acc.tip of lower section 

acc.tip of upper section test rig with most simply geometry for: 
 analysing dynamic behaviour 
 analysing controller behaviour 

http://www.logistics-journal.de/archive/2006/721/movie_1_without_clearance.avi
http://www.logistics-journal.de/archive/2006/721/movie_1_without_clearance.avi
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Movie 2 shows the dynamic behaviour of a two-sectional graduated system with clearance 
(2mm). On the left side, you can see the whole test rig, in the upper window, the overlapping area 
can be seen and in the lower window, the development of the vibrations can be observed, 
presented by the acceleration signals of the sections tips. The movie is shown in slow-motion; the 
fundamental frequency is 0.53Hz. As expected, the vibration-development is not longer harmonic. 
Only the characteristic vibration of upper and lower section is in phase balance. Each time the 
lower end of the upper section hits the lower section, high frequent vibrations (e.g. 6.35Hz) are 
stimulated due to the impact. As seen in Movie 2, the acceleration signal of the high frequent 
vibrations shows an antiphase development.  

 

 
 

Mov. 2: System with clearance 
 

 3. Physical Modell 
From the viewpoint of mechanics, a non-linear multi-field problem of vibrating structural 

members with variable geometry has to be considered. Material surface areas of particular 
components move along surface areas of other components and define complicated boundary and 
transition conditions. The clearance produces non-linear effects. In many applications the different 
segments are slender and can be modelled as Bernoulli/Euler beams mounted on a rigid vehicle 
unit and carrying at some location, e.g., at the end of the last section, a load unit assumed to be 
rigid. The vehicle unit together with the first deformable segment and all the other segments (one 
of them together with the load) perform transverse motions and the extending or retracting motion 
of the sections is supplemented. The contact regions between two sections are modelled as discrete 
point contacts. A special feature of the modelling is to introduce the reaction forces at the contact 
points in the form of distributed line loads (by using Dirac impulse functions), so that for the 
contacting sections elementary boundary conditions remain. The contact formulation itself takes 
place via one-sided spring-damper elements. 

The procedure is illustrated in Fig. 4a for a two-section telescopic beam system mounted on a 
rigid traverse, performing a translational motion accompanied by an extending motion of the two 
beam segments with defined clearance between them. Beam 1 is fixed at a rigid vehicle unit; beam 
2 carries a point load at its end. The vehicle is driven by a horizontal force F  as excitation. The 
deformation of the beams (including vehicle mass and load) is represented by the absolute 
displacements ),( 1 txw  and ),( 2 txv . The model is defined by the following parameters: beam 

http://www.logistics-journal.de/archive/2006/721/movie_2_with_clearance.avi
http://www.logistics-journal.de/archive/2006/721/movie_2_with_clearance.avi
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lengths 2,1l , constant cross-sectional areas 2,1A , constant cross-sectional moments of inertia 2,1I , 

density ρ  and Young’s modulus E  of the two flexible components, masses of load and vehicle 

Lm  and Tm , respectively, and telescopic length )(tlA . The contact between the beams is 
realised (see Figure 4b) via discrete spring-damper systems in the form of a so-called displacement 
condition (not a force condition) [3], the given number n  of contact points, the clearance Sl , 

spring stiffness c , and damping coefficient d . c  can be estimated from the geometry and the 
material of the contact partners whereas the estimation of d  is more complicated. As the purpose 
of the model is the creation of a control concept for vibration suppression, it is important that the 
equations of motion stay as simple as possible. In the controlled system the clearance plays the 
role of an external disturbance and as the controller has to work for every kind of contact, a very 
accurate estimation of d  is not necessary. In the axial direction it is assumed that there is no 
friction. This assumption is justifiable as the bearing between the different segments is realised as 
roller bearing in many applications. It is assumed here that the force flow leads from the upper part 
into the lower part.  
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Fig. 4: a) System model                                    b) Contact formulation 
 

 

4. Formulation 
 

Boundary value problem 
Applying Hamilton’s principle 

 
 ( )1 1

0 0

  

  
0,

t t

virtt t
T U dt W dtδ − + =∫ ∫  (2.1) 

 
the governing boundary value problem can be derived. T  is the kinetic energy, U  the potential 
energy and virtW  the virtual work of forces without potential of the considered system. The kinetic 
energy reads 
 

 1 2  2 2
1 1 2 2 0  0

1 1 ,
2 2

l l

t tT A w dx A v dxρ ρ∗ ∗= +∫ ∫  (2.2) 

 
where ( )1 1 1TA A m xρ ρ δ∗ = +  and ( )2 2 2 2LA A m x lρ ρ δ∗ = + −  and the symbol ( ).δ  
represents Dirac’s delta-function. If the action of the spring-damper systems is completely 
included into the virtual work, for the remaining potential energy one obtains 
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( )1 1 2

1 1 1
1

2 2

2 2 2
2

   2 2
1 1 1 2 2 1 0   0

  2 2
2 2 2 2 0  

1  
2
1     .
2

l l l

x x xx

l l

x x xx

U EI w g A dx A dx w dx

EI v g A dx v dx

ρ

ρ

∗ ∗

∗

⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎡ ⎤+ −⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫
 (2.3) 

 
Since no internal damping of the beam segments will be taken into consideration, as the worst case 
for control, the virtual work contains all the contact forces between the beams and the locally 
concentrated driving force of the vehicle as distributed loads ( )1 1,f x t  and ( )2 2 ,f x t  which 
couple the resulting field equations: 

 
 1 2  

1 1 2 2 0  0
.

l l

virtW f wdx f vdxδ δ= +∫ ∫  (2.4) 
 

Due to the formulation of all these locally concentrated forces by distributed loads using Dirac 
impulses, the boundary conditions will be homogeneous. Evaluating Hamilton’s principle (2.1) 
introducing T , U  and virtW  according to equations (2.2), (2.3) and (2.4), respectively, yields the 
governing field equations 

 

 
( ) ( )

( ) ( ) ( )
1 1 1 1 1 1 11

1

1 1 1 1 1 2 2

1 1 1 1 2 2           = , ,

tt x x x x x L x xx

L x

A w EI w A g l x w g m A l w

f x t x l g m A l w

ρ ρ ρ

δ ρ

∗ ⎡ ⎤+ + − + +⎣ ⎦

+ − +
 (2.5) 

 

 
( )

( ) ( ) ( ) ( )
2 2 2 2 2 2 22

2 2

2 2 2 2 2

2 2 2 2 2 2 2           = ,

tt x x x x x L x xx

L x L x

A v EI v A g l x v gm v

f x t x g m A l v x l gm v

ρ ρ

δ ρ δ

∗ ⎡ ⎤+ + − +⎣ ⎦

− + + −
 (2.6) 

 
and the corresponding boundary conditions 

 
 ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 11 10, 0, 0, 0, , 0, , 0,x x x x x x x x xw t w t w l t w l t= = = =  (2.7) 
 

 ( ) ( ) ( ) ( )
2 2 2 2 2 2 2 2 2 22 20, 0, 0, 0, , 0, , 0x x x x x x x x x xv t v t v l t v l t= = = =  (2.8) 

 
for the two bodies. 
For the special case in which the beam segments contact each other at the two points 1 1x l=  and 

2 0x =  only, the distributed forces are specified as 
 

 
( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1 1 1 1

1 1 2 2 2      ,

A K K

K K

df x F x l t F t t D t
dt

dx l F t t D t
dt

δ δ ξ ξ ξ

δ ξ ξ ξ

⎛ ⎞= + − + ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + ⋅⎜ ⎟
⎝ ⎠

 (2.9) 

 

 
( ) ( )( ) ( ) ( )( )

( )( )( ) ( )( ) ( ) ( )( )

2 2 1 1 1

2 1 2 2 2      .

K K

A K K

df x F t t D t
dt

dx l l t F t t D t
dt

δ ξ ξ ξ

δ ξ ξ ξ

⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞− − − + ⋅⎜ ⎟
⎝ ⎠

 (2.10) 

 
The non-linear characteristic of the spring force ( )( )KF tξ  takes into account the fact that in the 
range of backlash no forces can be transferred. The same is valid for the assumed damping 
coefficient ( )( )KD tξ : 
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( )( ) ( ) ( ) ( )

( ) ( )

1 sign
2 2 2

1                              sign ,
2 2 2

S S
K

S S

l lF t c t t t

l lt t

ξ ξ ξ ξ

ξ ξ

⎡ ⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎣
⎤⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟⎥⎝ ⎠ ⎝ ⎠⎦

 (2.11) 

 

 ( )( ) ( ) ( )1 11 sign sign ,
2 2 2 2

S S
K

l lD t d t tξ ξ ξ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (2.12) 

 
 ( ) ( ) ( )( ) ( ) ( )( )( ) ( )1 2 1 10, , , , , .A At v t w l t t t v l l t t w l tξ ξ= − = − −  (2.13) 

 
Discretisation 
The discretisation of the coupled partial differential equations (2.5) and (2.6) (nonlinear and time-
variant in general) together with the corresponding boundary conditions (2.7) and (2.8) is based on 
Galerkin’s method. For that, the approximate solutions ( )1,w x t  and ( )2 ,v x t  are represented 
by a series expansion 
 

 ( ) ( ) ( ) ( )
( ) ( )1

1 1 1
1 1

cos
, cos cosh ,

cosh

N
i

i i i
i i

l
w x t u t x x

l
λ

λ λ
λ=

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2.14) 

 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )( )

2 1 2 2 2 2
3

2 2
2 2

2 2

, cosh cos

cosh cos
            sinh sin

sinh sin

N

N N N i i i
i

i i
i i

i i

v x t u t u t x u t x x

l l
x x

l l

κ κ

κ κ
κ κ

κ κ

+ + +
=

= + + +⎡⎣

−
⎤− + ⎦−

∑
 (2.15) 

 
fulfilling all boundary conditions (2.7) and (2.8). 
Galerkin’s averaging leads to a system of ordinary differential equations of the type 

 
 ( ), , .t=Mu F u u&& &  (2.16) 

 

5. Vibration supression concept 
To suppress vibrations, a state space control concept is introduced. For a system without 

clearance and with a fixed telescopic length, equation (2.16) represents a time-invariant system of 
linear ordinary differential equations which can be reformulated as 
 
 ( )F t∗+ =Mu Cu b&&  (3.1) 
 
where ∗b  is a 2N -dimensional vector, M  is the mass matrix and C  is the stiffness matrix of 
the system. 
 
Reduction of order 

Equation (3.1) represents a 2N -degree-of-freedom system. The objective of an order 
reduction is to find, for a given model of high order, a model of significantly lower order whose 
dynamic behaviour approximates the original behaviour as well as possible. This means that the 
approximate model has to contain the essential modes of the original system, since they dominate 
the dynamic behaviour of the original system [Lunze01]. For this purpose, the system equations 
(3.1) are transformed to principal coordinates y  by 
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 .R=u M y  (3.2) 
 

The columns of the ( )2 , 2N N -matrix RM  will be composed of the right eigenvectors 

Rim ( )1, 2,..., 2i N=  of the system. LM  is a matrix which contains the left eigenvectors of the 

system ( )1T
L R

−=M M . There is 

 
 ( )1 2 2 2

1 2 2diag , ,...,T
L R Nω ω ω− = − =M M CM D  (3.3) 

 
and 2

iω ( )1, 2,..., 2i N=  are the eigenvalues of the system. 
From equation (3.1), using (3.2) and (3.3), it follows that 

 
 ( )1 .T

L F t− ∗= − +y Dy M M b&&  (3.4) 
 

If then the eigenvectors corresponding to the large eigenvalues are removed from RM  and LM , 

one obtains the reduced ( )2 , rN N -matrices RrM  and LrM , and with that the approximate 
model is 
 
 ( )1 .T

r r r Lr F t− ∗= − +y D y M M b&&  (3.5) 

 
This type of order reduction is justified since the state control should control the rigid body motion 
and the lower modal vibrations of the system. The high-frequency oscillations possess a small 
magnitude and will diminish strongly by material damping effects. The number of higher-order 
modes to be included into the reduced model has to be determined depending on the application 
and the quality of control desired. 
 
Driving unit 

The driving unit of the telescope will be represented by a scalar system of first order  
 

 A AT F F K U+ =&  (3.6) 
 

with time constant AT  and amplification factor AK . U  is the control voltage of the motor. 
Introducing the state variables 

 
 1 1 1 1 2 2 1,..., , ,..., , ,

r r r r r rr N rN N r N rN Nz y z y z y z y z F+ += = = = =& &  (3.7) 
 

instead of (3.5) and (3.6) one obtains 
 
 .U= +z Az b&  (3.8) 

 
Controllability and observability 

Controllability and observability are checked by computing the so-called controllability matrix 

SQ  and observability matrix BQ  [Föllinger78]: 

 1 2 1 1, ,..., , , ,S S S S Si SiSN∗ +⎡ ⎤= = =⎣ ⎦Q q q q q b q Aq  (3.9) 
 

 1 2 1 1, ,..., , ,
T T

B B B B wF Bi BiBN∗ +⎡ ⎤= = =⎣ ⎦Q q q q q c q A q  (3.10) 
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where 
 

 2 1,rN N∗ = +  (3.11) 
 

 ( ) ( ) ( )1 20 , 0 ,..., 0 ,0,...,0
T

wF N RrW W W⎡ ⎤= ⎡ ⎤⎣ ⎦⎣ ⎦c M S  (3.12) 
 

and S  comes from 
 
 .r =y Sz  (3.13) 

 
The system is completely controllable if the determinant of SQ  does not vanish, and it is 

completely observable if the determinant of BQ  does not vanish. For real systems, both 

conditions are usually fulfilled, but it should be mentioned that for a very large mass Tm  
problems with the observability may occur since then the reaction of the telescope vibrations on 
the motion of the base is very weak. 

 
Control design by pole placement 

The control synthesis in the state space is directed to the goal of taking the state of the system 
from an initial state 0z  to the state 0E =z  fulfilling demands on the dynamic behaviour of the 
system. The poles of the feedback control loop determine the transfer behaviour, and therefore 
they have to be selected in such a manner that the requirements on the dynamic behaviour are 
fulfilled. This leads to the desired characteristic polynomial of the closed control loop: 

 
 ( ) 1

0 1 1
... .N N

N
p s p p s p s s

∗ ∗

∗
−

−
= + + + +  (3.14) 

 
To achieve this aim, the N ∗ -dimensional vector r  (see Figure 2) as defined by J. Ackermann 
reads  [Föllinger78]. 

 

 1
0 1

...T T T N T N
S S SN

p p
∗ ∗

∗
−

−
= + + +r q q A q A  (3.15) 

 
where T

Sq  is the last row of the inverse controllability matrix 1
S
−Q  (see (3.9)). 

For a constant or a slowly changing (compared to the control loop) command variable FSw  (see 

Figure 5), the pre-filter S  (see Figure 5 and [Föllinger78], for instance) reads 
 

 1

1 .
( )T T

wF

S −=
−c br A b

 (3.16) 
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Fig. 5: State space control loop. 
 

 
 

Luenberger observer 
For the present problem, the state vector z  cannot be measured directly, but the control voltage 

U  of the motor and the displacement ( )0,w t
 
of the base are measurable. The objective of the 

so-called Luenberger observer is to find from this information an approximate value ẑ  of z . The 
observer then is written as 

 
 ( )ˆ ˆ 0, .U w t= + +z Fz b k&  (3.17) 

 
The eigenvalues of F  are prescribed and placed on the left of the eigenvalues of the closed control 
loop, which leads to the desired characteristic polynomial 

 
 ( ) 1

0 1 1
... .N N

N
f s f f s f s s

∗ ∗

∗
−

−
= + + + +  (3.18) 

 
According to (3.15) k  then reads 

 
 1

0 1
... N N

B B BN
f f

∗ ∗

∗
−

−
= + + +k q A q A q  (3.19) 

 
where Bq  is the last column of the inverse observability matrix 1

B
−Q  (see (3.10)). 

F  reads [Föllinger78] 
 

 .T
wF= −F A kc  (3.20) 

 
Telescopic operations with clearance 

For real telescopic operations the parameters of the controller and of the observer are 
determined for different telescopic lengths and approximated by polynomials which leads to an 
adaptive controller ( )( ) ( )( ),A Al t S l tr  and observer ( )( ) ( )( ), ,A Al t l tF b  ( )( )Al tk . Due 
to the Luenberger observer, straightforward measurements of the motion of the telescope base and 
of the control variable of the actuator are sufficient to operate the controller. This makes it 
possible, to apply the controller, developed for the reduced linear system model, to the 
significantly more complicated system with clearance (2.16) for studying the influence of 
clearance on the vibration suppression during telescopic motions. 
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6. Simulation Results 
Quantitative results are presented here for a 2-sectional system. The results should illustrate the 

effect of the controller on a telescopic system with and without clearance and only represent a 
small extract of the existing results. For better comparison of the measured dynamic behaviour and 
the simulation results, the parameters are taken originally from the above described and illustrated 
test rig: 
 

1 2 1.35ml l= = , 2
1 2 0.001mA A= = , 8 4

1 2 0.83 10 mI I −= = ⋅ , 37850kg/mρ = ,
100kgTm = 17.897kgLm = , 11 22.1 10 N/mE = ⋅ , 710 N/mc = , 310 Ns/md = , 3n = . 

 
The calculation results are based on 4-term truncations (2.14) and (2.15). The controller 

influences the rigid body motion and the first modal vibration of the system. The poles of the 
closed control loop and of the Luenberger observer are placed on the points -8 and -12 in the 
complex plane. 
 

 
Fig. 6: Position of the base. 

 
The system starts from an initial point without any initial velocity and has to cover a straight 

distance of 8 m  before it stops after 8 s . Figure 6 shows the position of the base of the telescope 
versus time for a prescribed velocity of  1m/s  and for a motion prescribed by the controller. Both 
simulations are done with )01.0( mls =  and without )0( mls =   clearance. During the 

simulations, the telescopic length increases from mlA 15.0)0( =   to mlA 1)8( =  with constant 
velocity. Figure 7 shows the position of the telescope tip relative to its base during the motion and 
illustrates the vibration suppression by state control. The remaining deflection of the relative 
position in the simulation with clearance comes from the tilted position of the upper segment in the 
lower segment due to clearance. 
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Fig. 7: Relative position. 
  
Movie 3a) (controlled) and Movie 3b) (without control) show animations of the computational 

results with clearance. The red lines represent the lower segment, the blue line represents the upper 
segment, as seen from the point of view of an observer moving with the base of the telescope. 
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        Mov. 3a):     controlled                                       Mov. 3b):     uncontrolled 

 

7. Conclusions 
To improve efficiency and to overcome possible safety problems of multi-section constructions 

during acceleration and deceleration in driving direction and additional extending and retracting 
motion of the sections, a vibration suppression in such structural systems of variable geometry 
seems to be useful. To achieve this, an appropriate modelling of the system together with the 
development of an efficient control strategy are the essential problems to be treated. For slender 
beam-shaped structural members, the present contribution has suggested an approach to find a 
good solution with a justifiable computational expense. 

To suppress unavoidable vibrations, the concept of state control via pole placement seems to be 
very efficient. Based on a model reduction, it is possible to design a control approach which 
exhibits the desired effects without extensive effort. Introducing a so-called Luenberger observer, 
straightforward measurements of the motion of the telescope base and of the control variable of the 
actuator are sufficient to operate the controller. Additionally, this makes it possible to apply the 
controller developed for the reduced linear system model to the significantly more complicated 
system with clearance for studying the influence of clearance on the closed control loop. The 
straightforward handling opens the way for exhaustive parameter studies. To evaluate the results, 
the existing test rig will be modified and used further on. 
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